Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions

Edrah, Mohamed and Lo, K.L. and Anaya-Lara, Olimpo (2016) Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions. IET Generation, Transmission and Distribution. pp. 1-22. ISSN 1751-8695

[img]
Preview
Text (Edrah-Lo-Anaya-Lara-IGTD-2016-reactive-power-control-of-DFIG-wind-turbines)
Edrah_Lo_Anaya_Lara_IGTD_2016_reactive_power_control_of_DFIG_wind_turbines.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

This paper analyses the effect of replacing existing synchronous generators equipped with power system stabilizers (PSS) by DFIG based wind farms on the damping of power system oscillations in a multi-machine power system. A power system stabiliser was designed to enhance the capability of DFIG to damp power systems oscillations. The validity and effectiveness of the proposed controller are demonstrated on the widely used New England 10-machine 39-bus test system that combines conventional synchronous generators and DFIG based wind farms using eigenvalue analysis and nonlinear simulation. The nonlinear simulation is used to demonstrate how the damping contribution of DFIG based wind farms is affected by different operating conditions within the same wind farm and stochastic wind speed behaviour. The results show that installing conventional fixed parameters PSS within reactive power control loop of DFIG rotor side converter has a positive damping contribution for a wide range of operating conditions. Furthermore, the results clearly show that DFIG based wind farms equipped with the proposed farm level PSS can damp power system oscillations more effectively than synchronous generators PSS.