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Overview

The main aim of this presentation is to:

●Compare (by way of a simulation) a number of existing 
approaches for analysing Adverse Events using 
groupings in clinical trials.

●Discuss the Adverse Event groupings and methods

●Look at a simulation study and the results

●Summary and conclusions



Adverse Events

●Routinely recorded during a trial

●  Severity - Common Terminology Criteria for Adverse 
Events provides a scale from 1–5 (1 = mild,..., 5 = death)

●  Time of occurrence and/or duration

●  Effect sizes may be small – long follow up / large 
numbers of patients

●  Many different types of Adverse Events – may have 
multiple hypotheses



Recent Approaches to Analysing Safety Data

A number of recent approaches to analysing safety data have grouped what they 
consider to be related adverse events into body-systems or System Organ Classes. 

The idea being that if a treatment affects a particular body system then we may expect 
to see raised adverse event counts for all adverse events in that body-system.

 Berry, Berry - Accounting for Multiplicities in Assessing Drug Safety: A Three-Level 
Hierarchical Mixture Model (2004) 

 Mehrotra, Adewale - Flagging clinical adverse experiences: reducing false 
discoveries without materially compromising power for detecting true signals (2011).



Body-System Hierarchy

The grouping by Body-System we consider has a natural hierarchical structure, with 
the body-system being part of an overall body and the adverse events being 
associated with particular body-systems:



Methods

http://personal.strath.ac.uk/raymond.carragher/
Package: c212 – under development and untested

Method Description

HIER.BB Berry and Berry model

HIER.1a Subset of HIER.BB

BH Control of the False Discovery Rate by the 
Benjamini-Hochberg procedure

DFDR Double False Discovery Rate

NOADJ Unadjusted testing

BONF Bonferroni correction

GBH Group Benjamini-Hochberg

ssBH Subset Benjamini-Hochberg

http://personal.strath.ac.uk/raymond.carragher/


Berry and Berry Model
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Simulation Study

We used a simulation study to assess how the various methods performed
with regard to detecting the raised levels of adverse events between treatment and
control. 

Model used to generate the simulated trial data:
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where μ is a fixed effect and U is a random effect.



Simulation Study

Results from one particular (repeated) simulation:

8 body-systems with between 1 and 11 adverse events in each body-system.
45 adverse events in total.

Trials size:
Trial 1 – 110 patients in each arm
Trial 2 – 450 patients in each arm
Trial 3 – 1100 patients in each arm

For all trials:
The AE rate was raised for body-system 5 for both treatment and control.
The AE rate was raised for body-system 3 for treatment only.
The AE rate was raised for body-system 2 for two out of 4 AEs for treatment only.



Simulation Study

500 simulations in total.

Adverse Event Numbers
In each simulation there are 9 Adverse Events which have underlying rate raised in 
treatment compared to control.

22500 Adverse Events over the whole simulation.

4500 Adverse Events with raised rates over the whole simulation.

Flagging an Adverse Event:
95% posterior probability for Bayesian methods
5% significance level for the error controlling methods



Simulation Study
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Simulation Study

Berry & Berry Model:
HIER.BB (point mass): HIER.1a (no point mass):



Simulation Study – Trial 2 (450 per arm)

Method Correct Incorrect Missed

Berry & Berry (HIER.BB) 4303 9 197

Berry & Berry without point 
mass (HIER.1a)

4492 582 8

Unadjusted Testing (NOADJ) 4374 682 126

Bonferroni Correction 
(BONF)

3258 12 1242

Double False Discovery Rate 
(DFDR)

4317 72 183

False Discovery Rate (BH) 4022 114 478

Group Benjamini-Hochberg 
(GBH)

4441 144 59

Subset Benjamini-Hochberg 3848 14 652



Simulation Study – Trial 3 (1100 per arm)

Method Correct Incorrect Missed

Berry & Berry (HIER.BB) 4498 5 2

Berry & Berry without point 
mass (HIER.1a)

4500 705 0

Unadjusted Testing (NOADJ) 4500 707 0

Bonferroni Correction 
(BONF)

4486 10 14

Double False Discovery Rate 
(DFDR)

4500 67 0

False Discovery Rate (BH) 4499 132 1

Group Benjamini-Hochberg 
(GBH)

4500 143 0

Subset Benjamini-Hochberg 4498 25 2



Summary

 The simulations have indicated that where there are relationships between the 
Adverse Events using groupings (body-systems) do appear to make a difference to the 
results.

The point mass in the Berry & Berry model (HIER.BB) makes a quantitative 
difference to the results.

 For the error controlling methods it may be difficult to objectively pick a method of 
analysing the data before the trial.

 The body-system described in Berry & Berry looks to be a worthwhile structure to 
consider when modelling data.

 The models and data discussed here do not take into account the severity of events.

 The models and data discussed here do not take into account the timings of events.



References

[1] D. V. Mehrotra and J. F. Heyse. Use of the false discovery rate for evaluating clinical safety data. Stat Methods Med Res, 13(3):227–38, 
2004.

[2] S. M. Berry and D. A. Berry, “Accounting for multiplicities in assessing drug safety: A three-level hierarchical mixture model,” Biometrics, 
vol. 60, no. 2, pp. 418–426, 2004.

[3] D. V. Mehrotra and J. F. Heyse. Use of the false discovery rate for evaluating clinical safety data. Stat Methods Med Res, 13(3):227–38, 
2004.

[4] D. B. Dunson, A. H. Herring, and S. M. Engel, “Bayesian selection and clustering of polymorphisms in functionally related genes,” Journal 
of the American Statistical Association, vol. 103, no. 482, pp. 534–546, 2008.

[5] J. N. S. Matthews, Introduction to Randomized Controlled Clinical Trials, Second Edition. Chapman & Hall/CRC Texts in Statistical 
Science, Chapman and Hall/CRC, 2006.

[6] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the 
Royal Statistical Society. Series B (Methodological), 57(1):289–300, 1995.

[7] J. X. Hu, H. Zhao, and H. H. Zhou. False discovery rate control with groups. J Am
Stat Assoc, 105(491):1215–1227, 2010.

[8] Daniel Yekutieli. False discovery rate control for non-positively regression dependent test statistics. Journal of Statistical Planning and 
Inference, 138(2):405–415, 2008.

[9] H. Amy Xia, H. Ma, and B. P. Carlin, “Bayesian hierarchical modeling for detecting safety signals in clinical trials,” Journal of 
Biopharmaceutical Statistics, vol. 21, no. 5, pp. 1006–1029, 2011.


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

