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Abstract

The occurrence, severity and duration of patient adverse events are routinely recorded
during randomised controlled clinical trials. This data may be used by a trial’s Data Safety
Monitoring Committee to make decisions regarding the safety of treatments and in some
cases may lead to the discontinuation of a trial if real safety issues are detected. Consequently
the analysis of this data is a very important part of the conduct of any trial.

There are many different types of adverse event and the statistical analysis of this data must
take into account multiple comparison issues when performing statistical tests. Unadjusted
tests may lead to large numbers of false positive results, but simple adjustments are generally
too conservative and risk compromising the power to detect important treatment differences.
Mathematically there are a number of different approaches to analysing safety data with
general error controlling procedures, recurrent event analysis, survival analysis and other
direct modelling approaches (both Bayesian and Frequentist) all being used. Recently a
variety of classical (Mehrotra and Adewale, 2012) and Bayesian (Berry and Berry, 2004;
DuMouchel, 2010) methods have been proposed to address this problem. These methods
use possible relationships or groupings of the adverse events.

We implement and compare by way of a simulation study of grouped data some of these more
recent approaches to adverse event analysis and investigate if the use of a common underlying
model which involves groupings of adverse events by body-system or System Organ Class
is useful in detecting adverse events associated with treatments. All of the group methods
detect more correct significant effects than the Benjamini-Hochberg or Bonferroni procedures
for this type of data. In particular the body-system as described by Berry and Berry (2004)
looks to be a worthwhile structure to consider for use when modelling adverse event data.



1 Introduction

Randomised controlled clinical trials, conducted under the supervision of a Data (Safety) Mon-
itoring Committee (DMC), are the standard method for establishing the efficacy and safety of
new treatments. During a trial the DMC may, based on the analysis of clinical events recorded
during the trial, make recommendations about the conduct of the trial. This can include rec-
ommendations regarding the termination of the whole trial or individual trial “arms”. Reasons
for terminations before the scheduled end of the trial can include early demonstrations of effi-
cacy, concerns regarding safety issues, or the possibility that continuing the trial may be futile.
Consequently the analysis of the safety related data, in particular what are termed Adverse
Events (AEs), is extremely important.

The anticipated effect sizes of Adverse Events in these studies are generally small and in
order to accumulate the number of events to detect such effect sizes with a sufficiently high
power the follow up time has to be very long or a large number of patients need to be recruited.
Due to the large number of different variables recorded unadjusted significance tests may lead
to large numbers of false positive results, but simple adjustments risk compromising the already
possibly low power to detect important treatment differences. Recently a variety of classical
() and Bayesian (2], [3]) methods have been proposed to address this problem. These papers
consider how the use of relationships which may exist between Adverse Events may be used to
group them into body-systems and this additional information used in a statistical analysis. In a
Bayesian context, the information within the body-systems can also be used as one approach to
handling multiplicities with the additional information available used to shrink non-significant
effects towards zero and to borrow strength from the assumed relationships among the Adverse
Events ([4]).

These methods are relatively complex to implement and there is to date little experience
among practitioners in their use. In this study we implemented a number of the methods
to compare their interpretability and error rates on simulated data and to investigate if the
body-system is useful when dealing with safety data. For the simulation we used 8 different
body-systems, numbered 1 - 8, with between 1 and 11 different Adverse Events in each body-
system. There were 45 Adverse Events in total.

2 Methods and Implementation

The following methods for analysing Adverse Event incidence data are compared: unadjusted
significance testing (NOADJ); the Bonferroni correction (BONF) ([5]); control of the False
Discovery Rate (FDR) by the Benjamini-Hochberg procedure ([6]); control of the False Discovery
Rate by a number of grouping procedures: the Double False Discovery Rate (DFDR) ([1]),
Group Benjamini-Hochberg (GBH) ([7]), subset Benjamini-Hochberg (ssBH) ([8]; the three-
level hierarchical model of Berry and Berry ([2]) and Model 1a from Xia et al ([9]) which is a
subset of the Berry and Berry model, details of which are given in

The unadjusted testing, Bonferroni correction and False Discovery Rate control procedures
all require the calculation of p-values. For the purposes of the simulation we followed [2] and
use an exact Fisher 2-sided test. Direct comparisons between these error controlling procedures
are possible. However direct comparisons with the Bayesian models require that the Bayesian
approaches have a defined criteria for flagging Adverse Events. None of the methods we are
looking at have such definitive criteria so when comparing across the different methods we
used a nominal threshold value of 95% posterior probability for the Bayesian methods. For the
grouped BH methods (DFDR, GBH, ssBH) we used threshold values of 5%. The ssBH method
uses groupings of hypotheses to extend the range of dependent test statistics to which a BH
type FDR controlling procedure can be applied and still control the FDR at the desired level.



It is known to be as or less powerful than the BH-procedure itself in all circumstances.
The methods that are studied are:

Method Name | Description

HIER.BB Berry and Berry model, [2], also model 1b from [9]

HIER.1a Model 1a from [9]

BH False discover rate control by the Benjamini-Hochberg procedure ([6])
DFDR Double false discovery rate ([1])

NOADJ Unadjusted significance testing

BONF Bonferroni correction ([5])

GBH Group Benjamini-Hochberg ([7])

ssBH Subset Benjamini-Hochberg ([8])

Table 1: Methods used in Simulation Study

All the methods were implemented as R-packages (§A.1)). The Bayesian models (HIER.1a,
HIER.BB) were fitted using MCMC methods.

3 Simulation Study
Simulated Body-System Trial Data

The simulated data for Adverse Events based on the body-systems used a logistic regression
model to generate the trial incidence data. The data is marginal and assumed to correspond to
the binomial model (following [2]):

Controls: Xp; = Bin(Ng, cp;) (1)
Treatments:  Yy; = Bin(N7, ty)

The data model in its most general form is:

logit(pej) = ey + Unj (2)
where

e ¢ = 1,2 corresponding to the control and treatment groups respectively and py,; is the
probability of the occurrence of the j** Adverse Event in body system b in treatment
group t. We have c¢p; = p1p; and tp; = pap; as per [2].

o up; and Uy, are fixed and random underlying rates for Adverse Event j in body-system
b and treatment group t respectively.

For the purposes of the simulation we are interested in detecting increases in the odds ratios or
relative risks of Adverse Events between the two groups.

We used 8 body-system groupings, numbered 1 - 8, containing 1, 4, 7, 5, 9, 11, 3 and 6 different

Adverse Events respectively and we looked at three separate trial sizes: Trial 1 (No = 110, Ny =
110 ), Trial 2 (N¢ = 450, Ny = 450) and Trial 3 (N¢ = 1100, Ny = 1100).

Simulation Results

In this section we look at the results from one particular repeated simulation where the un-
derlying Adverse Event rate is raised for body system 5 for both treatment and control, raised
for body-system 3 for treatment only and raised for Adverse Events 1, 2 in body-system 2 for



treatment only. The plots below (Figure 1)) shows how the estimated parameters match the
actual parameters underlying the model, TDM15, without the random effects. For both control
and treatment the models have successfully estimated the parameter values.

Trial 2 - Simulation 162 (SIM162) Trial3 - Simulation 162 (SIM162)
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Figure 1: Estimated Log Odds and Increased Log Odds (Parameter Estimates)

The following plots (Figure [2) show the posterior distributions for the single Adverse Event in
body system 1 and the first Adverse Event in body system 3 for one simulation.
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Figure 2: Posterior Distributions

For body-system 1, where there is no difference between treatment and control, the distribution
for the no-point-mass model (HIER.1a) is centred on 0 but has a relatively large spread. On the
other hand for the point-mass model (HIER.BB) the posterior distribution is also effectively a
point-mass at 0. For body system 3 both posteriors are similar and the distribution is almost
totally greater than zero (as expected).

The results for each model for the repeated simulation are as follows:



Model Correct | Incorrect | Missed Model Correct | Incorrect | Missed
HIER.BB 4303 9 197 HIER.BB 4498 5 2
HIER.1a 4492 582 8 HIER.1a 4500 705 0
NOADJ 4374 682 126 NOADJ 4500 707 0

BONF 3258 12 1242 BONF 4486 10 14

DFDR 4317 72 183 DFDR 4500 67 0

BH 4022 114 478 BH 4499 132 1
GBH 4441 144 59 GBH 4500 143 0
ssBH 3848 14 652 ssBH 4498 25 2

Table 2: Trial 2 Table 3: Trial 3

where Correct are the counts of raised rate Adverse Events detected (an estimate of the power),
Incorrect are counts of Adverse Events whose rate is not raised who are declared significant
(Type-1I errors) and Missed are are the counts of raised rate Adverse Events which were not
detected (essentially an estimate of the Type-II error rate).

We can see that for the largest trial (Trial 3) most of the methods correctly identify the Adverse
Events with raised rates and the numbers missed are low. However some of the methods have
a tendency to incorrectly identify Adverse Events. The model HIER.BB appears to perform
best overall. As might be expected the results are not as clearcut for Trial 2. In this case
the method, HIER.1a, which indentifies the most Adverse Events also has the second highest
incorrectly identification count but the lowest Type-II error rate. Again, an argument could be
made that method HIER.BB performs best overall. The results for the simulations for Trial 1
were similar but more variable. It should be noted that the cut-off for the Bayesian models,
HIER.1la, HIER.BB, was an arbitrarily chosen 95%. With a different cut-off value the results
would have been different.

The simulation discussed in this section is for body-system simulated data. Similar simulations
based on independent Adverse Event data simulation models have been done and show less
discrepancies between the models.

4 Discussion

There is a need to be careful when drawing conclusions from simulation studies. The cut-off
chosen for the Bayesian models, HIER.1a and HIER.BB, was somewhat arbitrary at 95%. A
different choice of cut-off for each model could have been used to gain better results, increasing
the power without inflating the Type-I error. For our purposes the use of a 95% cut-off allows
suitable comparisons to be made between the methods and the determination of such a cut-off
is not the main point of the simulation study at this stage.

The main conclusion from the simulations is that, for data where there are believed to be
relationships between the Adverse Events, using groupings (body-systems) does appear to make
a difference to the results. All of the group methods, with the exception of ssBH as noted above,
detect more correct significant effects than the Benjamini-Hochberg or Bonferroni procedures.
However, for some of these methods the Type-I error may become inflated in comparison to the
other methods, e.g. HIER.1a. In particular the body-system as described by [2] and [9] looks
to be a worthwhile structure to consider for use when modelling data.

As stated in [2] the point mass in HIER.BB makes a quantitive difference in the modelling
approaches. We have seen in the simulations that with the same cut-off point for both models
HIER.1a and HIER.BB the effect of the point mass is to both reduce the numbers of correctly
detected Adverse Events and also the Type-I error rates. There is a trade-off to be made.



A Models and Implementation Details
A.1 Software

R software:
Model R-package
HIER.1a c212.BBa
HIER.BB c212.BBb

c212.BONF c212.FDR
c212.DFDR c212.FDR

c212.FDR c212.FDR
c212.GBH c212.FDR
c212.NOADJ | c212.FDR
c212.ssBH c212.FDR

Table 4: R Software

The software is available at http://personal.strath.ac.uk/raymond.carragher/|

A.2 Model HIER.BB

In this model we consider B body systems. Within body system b there are kj types of Adverse
Event labelled AEj,; where b = 1,..., k. There are N¢ patients in the control group and Np
in the treatment group.

Xp; and Yy, are the number of occurrences of Ay; in the control and treatment groups respec-
tively with the probabilities of experiencing A; being cp; for the control group and t; for the
treatment group. In the following b=1...B, 57 =1... k.

The model for the incidence data is:

ij ~ BiH(Nc, ij)
Yy, ~ Bin(Nr, ty;)

(3)

where N¢, Nr are the number in the control and treatment groups respectively, Xj; is the count
of Adverse Event incidence in the control group for the j* Adverse Event in body-system b and
Y); is the count for the treatment group.

The top level of the hierarchy models the log-odds by:

o5 = N (piyp, U'be)

. (4)
Hbj:Wbl[o]—l-(l—’frb)N(/L@b,o‘gb) b=1,....B, 7=1,...,k

where I is the indicator function.

As per usual in hierarchical models each of the parameters {jugp, ftyp, ...} are considered to be
random variables with their own distributions. The model is fully described in [2].

A.3 Model HIER.1a

Model 1a in [9] is an implementation of the Berry and Berry model ([2]) without the point mass
and is exactly the same as Model 1b above apart from the point mass and its corresponding
hyperparameters.


http://personal.strath.ac.uk/raymond.carragher/
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