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Non-Intrusive Load Disaggregation using Graph
Signal Processing

Kanghang He, Lina Stankovic, Jing Liao, and Vladimir Stankovic

Abstract—With the large-scale roll-out of smart metering
worldwide, there is a growing need to account for the individual
contribution of appliances to the load demand. In this paper, we
design a Graph signal processing (GSP)-based approach for non-
intrusive appliance load monitoring (NILM), i.e., disaggregation
of total energy consumption down to individual appliances used.
Leveraging piecewise smoothness of the power load signal, two
GSP-based NILM approaches are proposed. The first approach,
based on total graph variation minimization, searches for a
smooth graph signal under known label constraints. The sec-
ond approach uses the total graph variation minimizer as a
starting point for further refinement via simulated annealing.
The proposed GSP-based NILM approach aims to address the
large training overhead and associated complexity of conven-
tional graph-based methods through a novel event-based graph
approach. Simulation results using two datasets of real house
measurements demonstrate the competitive performance of the
GSP-based approaches with respect to traditionally used Hidden
Markov Model-based and Decision Tree-based approaches.

Index Terms—energy disaggregation, graph signal processing,
energy feedback, smart metering

I. INTRODUCTION

Appliance-level load demand information significantly en-
riches customer energy feedback and improves demand man-
agement measures via, for example, appliance load shifting
[2]. While appliance-level energy monitors can yield accurate
measurements, an alternative approach is preferred that is non-
intrusive and accommodates the ever increasing number of
appliances in a household, minimizing maintenance and instal-
lation costs due to sensor lifetime and networking/security is-
sues. Hence, non-intrusive appliance load monitoring (NILM),
i.e., disaggregation of the household aggregate load down to
individual appliances, based purely on analytical tools operat-
ing only on aggregate load data, has been gaining popularity,
especially with ongoing smart meter roll-outs worldwide.
The business case for NILM is presented in [3], showing
that resulting energy savings significantly surpass the costs
of NILM technologies. NILM can support retrofit appliance
advice, demand response measures, smart home automation
[4], and is an enabler in decision making for home-owners,
utilities, appliance manufacturers and policy makers.

Though NILM appeared in the 1980’s [5], there has been a
recent explosion in the NILM literature to tackle its practical
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challenges. NILM methods can be divided into two groups:
steady-state and transient-state methods. Steady-state NILM
methods rely on features extracted under steady-state operation
of appliances, e.g., changes in steady-state active power [6],
[7], [8], [9], reactive power [5], voltage and current wave-
form [10], [11], steady-state current harmonics and total har-
monic distortion [12], [13], or voltage-current trajectory [14].
Transient-state NILM methods identify appliances based on
their transient signatures, including transient power [15], high
frequency voltage noise [16], [17], harmonics of the transients
[18], [19], [20], duration and shape of power/voltage/current
transient waveform [21], [22]. Transient-state approaches
provide more distinguishable features than steady-state ap-
proaches and hence, in general, lead to higher disaggregation
accuracy. Transient methods require sampling rates in the order
of kHz or MHz [23], unlike steady-state methods, which are
more sensitive to power level fluctuations and at low sampling
rates, require longer monitoring time to capture all operation
cycles [24]. For a more detailed review of NILM, see review
papers [21], [23].

The proposed low-rate NILM approach in this paper is
motivated by the increasing availability of low-rate data from
electricity smart meters that are being deployed at large scale,
with an increasing penetration rate, in Europe, Australia and
the USA. For example, in the UK [25] and The Netherlands
[26] every household will have access to 10-second active
power readings. In the USA and Australia, smart meters
providing readings at rates in the order of seconds and
minutes, are massively deployed. Thus, NILM outputs can
be accessible to the average household, without additional
metering or monitoring hardware. This has prompted a recent
trend in NILM literature tackling the NILM problem at low
sampling rates, for example, [6], [7], [8], [27], [28], [29].
However, at low sampling rates, only steady-state features
can be extracted reliably. Due to the similarity of steady-state
load signatures among many domestic appliances, the NILM
problem is particularly challenging.

Most recent low-rate NILM methods are state-based meth-
ods that represent each appliance operation using a state
machine with distinct state transitions, based on appliance
usage patterns. Such probabilistic approaches are usually
based on a Hidden Markov Model (HMM) and its variants
(see [7], [23], [27], [28], [29] and references therein). Four
state-based methods for low-rate NILM, using conditional
factorial HMM and Hidden semi-Markov graph models, are
proposed in [27], but these methods have high computational
complexity and are prone to converge to a local minimum.
Another factorial HMM-based method is proposed by [7]
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for disaggregation of active power loads sampled at 1min,
using expert knowledge to build initial models for states of
known appliances, requiring correctly setting a priori-values
for each state for each appliance, which is in turn limited by
or strongly dependent on the particular aggregate dataset on
which NILM is being performed. The Hierarchical Dirichlet
Process Hidden Semi-Markov Model factorial structure is used
in [30], removing some limitations of the approach of [27],
but at increased complexity. A sparse coding algorithm, that
discriminately trains sparse coding dictionaries, is proposed
in [31], to learn a probabilistic model for each appliance’s
load demand over a typical week. The HMM-based method of
lower complexity, proposed in [32], reduces the execution time
by 72.7 times, but still requires 94 minutes for disaggregating
11 appliances. The main drawback of state-based approaches
is the need for expert knowledge to set a-priori values for
each appliance state via long periods of training and their high
computational complexity, which makes them unsuitable for
real-time applications [33].

Event-based NILM approaches have thus emerged [34],
which are based on detecting events, usually via edge detec-
tion, when the load signal undergoes a statistically signifi-
cant change indicating appliance use. After event detection,
features (e.g., active power signature, increasing/falling edge
[8], duration [35], uncorrelated power spectral components
[6]) are extracted to classify the events into pre-defined cat-
egories, each corresponding to a known appliance. Different
classification tools have been used, including support vector
machines (SVM), e.g., in [36], neural networks, e.g., in [37],
nonnegative tensor factorization [9], k-means [35] and decision
trees [8]. Challenges encountered by event detection tools
include large measurement noise, including large variance
of active power readings for common household appliances,
and similarity among active power steady-state signatures of
different appliances.

This paper presents a different approach, developing a graph
signal processing (GSP) method for steady-state NILM to
address the large training overhead and associated complexity
of conventional graph-based methods through a novel event-
based graph approach. GSP [38] is an emerging field that relies
on expressing the piecewise smoothness of a signal through
a graph. In [39], a GSP-based data classifier is proposed that
searches for a smooth graph signal under known label con-
straints, and is applied to image and document datasets. The
approach is based on the regularization of graph signals, using
the fact that if a signal is piecewise smooth, then the total graph
variation is generally small. Inspired by [38] and [39], in this
paper, we propose a GSP-based approach for NILM by posing
the load disaggregation problem as a single-channel blind
source separation problem [31] to perform low-complexity
classification of active power measurements. We treat active
power measurements as a signal, indexed by the nodes of an
undirected graph where each vertex corresponds to the signal
sample, and the weights of the edges connecting the vertices
reflect the degree of similarity between the nodes, i.e., the
weights of the edges enable ‘grouping’ on/off events from the
same appliance. Then, we define an optimization problem that
contains the regularization term of the total graph variation,

that is, we apply regularization on the constructed graph signal
to find the signal with minimum variation. However, unlike
the approach in [39], which solves for a smooth graph signal
using initially known labels as prior, to avoid over-smoothing,
we use the total graph variation minimizer as a starting point to
minimise the difference between the total measured power and
the sum of the disaggregated loads, deviating from traditional
NILM approaches (see [23], [9] and references therein).

The rest of the paper is organized as follows. Sec. II
provides a short background on GSP. Sec. III describes the
proposed GSP-based NILM algorithms, followed by results in
Sec. IV. The last section concludes the paper and highlights
future work.

II. GRAPH SIGNAL PROCESSING (GSP)
In this section, we describe some basic concepts of GSP.

All matrices are denoted by upper-case bold letters, such as
X. XT and X# are the transpose and pseudo-inverse matrices
of X, respectively. An element in the i-th row and j-column
of matrix X is denoted by Xi,j . Vectors are denoted by lower-
case bold letters, such as x, with the i-th element xi, and xi:j
denotes a sub-vector [xi, xi+1, . . . , xj ]

T , for i < j. A set is
denoted using calligraphic bold-letters, such asM, where |M|
denotes its cardinality.

GSP is a novel signal processing concept [38], [40] that ef-
fectively captures correlation among data samples in time and
space by embedding the structure of signals onto a graph [40]
leading to a powerful, scalable and flexible approach suitable
for many data mining and signal processing problems, ranging
from image denoising and data compression, to classification,
biomedical, and environmental data processing (see [38], [39],
[40], [41] and references therein). GSP is particularly suitable
for data classification when training periods are short and
insufficient to build appropriate class models [39].

In GSP, a dataset x is represented by a discrete signal s
indexed by the nodes of a graph G = (V,A), where V is
the set of nodes and A is a weighted adjacency matrix of the
graph. Each element xi ∈ x corresponds to a node vi ∈ V .
The weight of the edge between nodes vi and vj reflects the
similarity between xi and xj and is usually defined using a
Gaussian kernel weighting function, which is one of the most
used kernels in machine learning for expressing similarity
between dataset elements:

Ai,j = exp
{
− (xi−xj)

2

σ2

}
, (1)

where σ is a scaling factor. Then, s, often referred to as graph
signal, is defined as a mapping from V to a set of complex
numbers. For example, s can be a set of classification labels,
where si is set to the label of the class that xi belongs to.

We define a graph signal’s total Lipschitz smoothness [38],
[42] with respect to the intrinsic structure of the underlying
graph G as:

1

2

N∑
i=1

N∑
j=1

Ai,j
(
si − sj

)2
. (2)

It can be shown that (2) is equal to sTLs [38], where an N×N
Laplacian matrix L is defined as

L = D−A, (3)
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Fig. 1. A GSP example with four nodes.

which is a real symmetric matrix and can be seen as a differ-
ence operator for the graph signal s [38]. In (3), D is an N×N
diagonal matrix where for k = 1, . . . , N , Dk,k =

∑N
j=1Aj,k.

Eigenvalues of L carry the notion of frequency spectrum of s,
where values of eigenvectors associated with low eigenvalues
(low frequency) change less rapidly [38] across the nodes,
which can be used to design graph signal filters.

Fig. 1 shows an example with four nodes. The thickness
of the graph edges reflect the correction between the nodes
and vertical lines correspond to the graph signal values. If the
graph signal s is piecewise smooth with respect to the graph G,
then (2) will be generally small, which can be used as a prior
for regularization. Indeed, in classification [39], the elements
that are strongly correlated will be connected via high-weight
edges and associated with the same classification labels si
making s varying smoothly across the connected nodes in the
graph.

III. METHODOLOGY

A. Problem Formulation

Let M be the set of all known appliances in the house
and p(ti) the measured aggregate active power of the entire
house measured at time ti. Without loss of generality, in the
following, we denote p(ti) as p(ti) = pi ≥ 0. Let pmj ≥ 0 be
the power load of appliance m ∈M at time instance tj .

Let ∆pi = pi+1 − pi and ∆pmi = pmi+1 − pmi . Then,

pi =

|M|∑
m=1

pmi + ni, (4)

where, ni is the measurement noise that also includes baseload
and all unknown appliances running. The disaggregation task
is, for i = 1, . . . , N and m ∈M, given pi, to estimate pmi .

B. GSP-based Disaggregation

To tackle the disaggregation problem using the GSP frame-
work, we construct a graph G = (V,A), where each vertex
vi ∈ V is associated to one sample ∆pi, i = 1, . . . , N .
For training, we assume availability of pi and pmi , for i =
1, . . . , n < N , for all m ∈ M. Then, the task is to estimate
pmi , for n < i ≤ N .

Let Thrm ≥ 0 be a power threshold for appliance m which
is set during training (see Sec. IV) in such a way that if

the magnitude of the appliance active power change is larger
than the power threshold, then we assume that the appliance
changed its operation state (e.g., switched on/off). Then, we
define an N -length graph signal sm for Appliance m as:

smi =


+1, for |∆pmi | ≥ Thrm and i ≤ n
−1, for |∆pmi | < Thrm and i ≤ n
0, for i > n.

(5)

Note that smi can be seen as a set of classification labels, where
during training (i ≤ n) smi is set to +1 (element i belongs to
Appliance m class) or -1 (element i does not belong to the
class), depending whether the appliance changed state or not.
Since for the testing dataset (i > n) we do not know if the
appliance was running, we set corresponding values of smi to
0.

We can now calculate adjacency matrix A according to (1),
where xi = ∆pi. The graph smoothness can be calculated
using (2).

Let ri =
[
∆p1i ,∆p

2
i , · · · ,∆p

|M|
i

]
and let the difference be-

tween the actual aggregate power and the sum of disaggregated
appliance powers be:

f(ri) =
∥∥∥∆pi −

∑|M|
m=1 ∆pmi

∥∥∥2
2
. (6)

We pose the disaggregation optimization problem as min-
imization of

∑N
i=n+1 f(ri) using piecewise smoothness as a

prior by introducing (2) as a regularization term, i.e.,

min
[rn+1,··· ,rN ]

N∑
i=n+1

f(ri) + ω
∑
m∈M

∥∥∥smT

Lsm
∥∥∥2
2
. (7)

Note that (7) defines an optimal solution as the smoothest
solution that minimizes (6), where ω is a parameter that trades
off smoothness and the minimization (6).

(7) is a hard optimization problem especially since |M|
and N − n can be large. Thus, we propose two approximate
solutions, one minimizing only the second term in (7), and the
other minimizing both terms iteratively.

C. Solution 1: Total Graph Variation Classifier

If we assume, as in [39], that the true classification labels
form a low-frequency graph signal sm, then for each Appli-
ance m, an individual classifier can be defined that minimizes∥∥∥smT

Lsm
∥∥∥2
2
, i.e., one that finds the smoothest signal.

We call this classifier, the total graph variation classifier.
The intuition behind it is that the labeled training samples for
i ≤ n that are close in value to the unknown samples, j > n,
will have large edge weights Ai,j , and so a smooth graph-
signal prior will ensure that the testing samples have similar
classification as these training samples.

Since sm1:n is known, determined during training, we can
simplify the smoothness term as [41]:

sm
T

Lsm =sm
T

1:nL1:n,1:ns
m
1:n+

sm
T

1:nL1:n,n+1:Nsmn+1:N+

sm
T

n+1:NLn+1:N,1:ns
m
1:n+

sm
T

n+1:NLn+1:N,n+1:Nsmn+1:N .

(8)
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Since matrix A is symmetric, D is diagonal and L is
diagonally symmetric, it follows that:

sm
T

1:nL1:n,n+1:Nsmn+1:N = sm
T

n+1:NLn+1:N,1:ns
m
1:n. (9)

Using (9), and since sm1:n is constant, the first term does not
affect minimization, we minimize (8) as:

arg min
∥∥∥smT

Lsm
∥∥∥2
2

=

arg min{2sm
T

n+1:NLn+1:N,1:ns
m
1:n+

sm
T

n+1:NLn+1:N,n+1:Nsmn+1:N}.

(10)

This is an unconstrained quadratic programming problem
with a closed form solution [41], [43]:

sm
∗

= L#
n+1:N,n+1:N

(
−smT

1:n

)
LT1:n,n+1:N . (11)

Once sm
∗

is determined, for i > n, if sm
∗

i > Ts, then,
Appliance m changed state, ∆pm

∗

i is set to the mean of pmi
which is calculated through the training process; otherwise,
Appliance m did not change its state, and ∆pm

∗

i = 0.
In contrast to [39], where the threshold Ts is set to zero,

we set our classification threshold Ts =0.5, which imposes
that only samples that are highly correlated with the training
samples will be assigned to the same class. The value of
0.5 was found heuristically to yield the fewest false positives
without increasing the number of false negatives.

We repeat minimisation of the smoothness term for all
appliances m ∈ M, where after each appliance has been
disaggregated, its contribution to the total load is removed by
subtracting its mean from the aggregate. Note that the same
nodes are used for all appliances, but matrix A changes with
updated ri

∗, i = n+ 1, · · · , N .

Fig. 2. An example of GSP-based disaggregtoin.

An example is given in Fig. 2. The top figure shows the
generated graph nodes and connections between the nodes.
Note that each node corresponds to one active power reading
shown in the middle graph. The graph signal (shown on the
bottom graph) contains classification labels for each power
edge. During testing (i > n) all calculated values of sm above
threshold Ts = 0.5 will be classified to the Appliance m class,
i.e., there was appliance state change or event.

The flow chart of the algorithm is shown in Fig. 3. The
complexity of the approach depends on N − n since it is
necessary to find the pseudo-inverse of an (N −n)× (N −n)
real-valued matrix, which can be done in O((N − n)3) time.

Fig. 3. Flow chart for Solution1: Total Graph Variation Classifier.

D. Solution 2: GSP + Simulated Annealing Refinement

Fig. 4. Flow chart for Solution 2. r∗i , i = n + 1, · · · , N is the solution
found by Solution 1.

While Solution 1 finds the smoothest graph signal under
given constraints, it may over-smooth the result. To avoid this,
we introduce a sub-optimal solution for solving (7) based on
minimising both terms.
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First, we apply Solution 1 based on (11), which is the
starting point for the simulated annealing method [44] that will
attempt to refine the result by minimising the first term of (7).
We demonstrate in the next section that simulated annealing
provides a solution identical or close to a greedy full-search
method, which has exponential complexity in |M|.

The flow chart of Solution 2 is shown in Fig. 4. Note that
the input is, r∗i , i = n+ 1, · · · , N , which is a solution found
by Solution 1. This solution is refined via iterative simulated
annealing, where iternum denotes the number of iterations. In
each iteration, a candidate solution qi is formed by randomly
setting appliances on/off. Step exp

{
f(ri)−f(qi)

T

}
> rand()

ensures that when the “temperature” T is high, the algorithm
does not accept a worse solution, where rand() is a function
that returns a random number in the interval (0, 1). We
heuristically demonstrate the convergence of the algorithm in
the next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the following results: (1) Relative
performance of using Simulated Annealing (SA) vs. Full
Search, (2) Relative performance of Solution 1, SA only and
Solution 2, (3) Comparison with state-of-the-art methods of
[8] and [7], (4) Computational complexity.

We use the publicly available REDD dataset that contains
load data from US houses [45], downsampled to 1min res-
olution, and the REFIT dataset [4], one of the largest UK
datasets that contains active power measurements, sampled at
8 sec resolution, and collected over a continuous period of 2
years from 20 UK homes. The REDD dataset contains clean
data and a small number of unknown appliances. On the other
hand, the REFIT dataset contains many unknown appliances
and high variations in the baseload. For validation purposes,
household appliances, for which timestamped individual power
consumption is available via submetering, are treated as known
appliances. They are: Dishwasher (DW), Refrigerator (REFR),
Microwave (MW), Washer dryer (WD), Kitchen outlet (KO),
Stove (ST), air-conditioning high (ACH ) and low (ACL)
state, Electronics (EL), Washing machine (WM), Kettle (KE),
Electric shower (ES), Electric heater (EH), Freezer (FRZ),
Fridge-freezer (FFRZ). Baseload and Unknown appliances are
abbreviated as BL and UN, respectively.

For training with the proposed methods, for each appliance,
we used a period in the aggregate dataset when only that
appliance is running (together with the BL). If a new appliance
is introduced in the household, the training dataset is updated
with that particular appliance’s signature, comprising samples
representing a full run from on to off. No retraining needs to
be performed for other appliances. At least 14 days worth of
data is used for testing.
Thrm is always set to one half of the difference between

mean values of Appliance m’s consecutive states. For example,
if a two-state appliance, on and off, Thrm would be half of
the power value in the on-state. The scaling factor σ is picked
during training in the area from the first non-zero value of the
smoothness term to the inflection point, which was shown to
provide the highest performance. For SA, temperature thresh-
old Y = 0.01, T0 = 100|M| and iternum = 1000 which

trades off performance and complexity. For both proposed
algorithms, we use windows of size 1000 samples, which
ensures low complexity (see Subsection IV-D).

The evaluation metrics used are precision (PR), recall (RE)
and F-Measure (FM ) [46] defined as:

PR = TP/(TP + FP ) (12)

RE = TP/(TP + FN) (13)

FM = 2 ∗ (PR ∗RE)/(PR+RE), (14)

where true positive (TP) is recorded when the detected ap-
pliance was actually used, false positive (FP) is when the
the detected appliance was not running, and false negative
(FN) indicates that the appliance operation was not detected.
Precision captures the correctness of detection - the higher the
PR, the fewer the FPs. On the other hand, high RE means
a low number of FNs, which implies that a higher percentage
of appliance state changes are detected correctly. FM balances
PR and RE.

In addition, we use the average normalized error metric to
measure the total energy difference between power estimated
by the NILM algorithm and the actual power consumed, across
all known appliances, which is defined as:

ANE =

∣∣∣∑N
i=1 p̄i −

∑N
i=1 p̂i

∣∣∣∑N
i=1 p̄i

, (15)

where p̂i is the power estimated by the NILM algorithm from
all disaggregated appliances m ∈ M at time i and p̄i is the
actual power consumed by all known appliances at time i. This
measure is useful, e.g., for appliance-itemized billing, when
quantifying, across a fixed period of time, the error incurred by
the NILM algorithm in estimating the total power consumed
by individual appliances.

A. Full-Search vs Simulated Annealing

Fig. 5 shows an example of the convergence of the SA
algorithm. It can be seen that the method converges after less
than 300 iterations. Similar results are obtained for different
datasets.

A full-search method can be used to minimize (6) off-line
when |M| is small. Assuming only two-state appliances (i.e.,
ON/OFF), for each sample i, each appliance can either be
switched on or off, or does not change state. Thus, with full-
search, there are 3|M| possible combinations that should be
inspected for each sample. Table I shows the FM value com-
parison between the full-search method and SA for two houses
from the REDD dataset. One can see that the proposed sub-
optimal SA approach finds a solution that is either identical
to or very close to the full-search method.

B. SA, Solution 1 and Solution 2 Comparison

In this subsection we compare three approaches: (1) Total
Graph Variation (Solution 1); (2) minimizing the first term of
(7) only, i.e., (6), using SA; (3) Solution 2, incorporating the
latter two approaches. As shown in Tables II and III, SA and
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Fig. 5. Convergence of the simulated annealing method for House 2 from
the REDD dataset.

TABLE I
SA VS. FULL-SEARCH (FS) FOR REDD HOUSE (H) 2 AND 6.

REFR ST MW KO EL ACH ACL DW
FS H2 0.84 0.31 0.91 0.83 - - - 0.62
SA H2 0.84 0.30 0.91 0.83 - - - 0.62
FS H6 0.77 0.75 0.77 0.55 0.48 0.92 0.56 -
SA H6 0.77 0.75 0.77 0.55 0.48 0.92 0.53 -

Solution 1, lead to significantly worse FM performance for
some appliances than treating them jointly (Solution 2).

When minimizing Equation (6), SA only uses known mean
values of pmi and thus does not account for small fluctuations
in actual instantaneous pmi . SA results in Table II are poor
for Stove, since Stove (mean pmi = 408W) is often confused
with the low-power state of Dishwasher (mean pmi =349W).
Similarly, in Table III, Kitchen Outlet and Electronics have
similar operating power states, hence they are often incorrectly
labelled.

SA only does not outperform Solution 1, however the
advantage of Solution 2 (integrating Solution 1 and SA) is
consistent across all appliances and especially significant for
appliances such as Electronics and AC.

TABLE II
THE FM RESULTS FOR REDD HOUSE 2.

Appliance REFR ST MW KO DW
Avg.Power [W] 171 408 1840 1056 1201 (349)

Solution1 0.81 0.81 0.91 0.85 0.83
SA 0.84 0.30 0.91 0.83 0.62

Solution2 0.84 0.86 0.93 0.88 0.84

TABLE III
THE FM RESULTS FOR REDD HOUSE 6.

Appliance REFR ST MW KO EL ACH ACL

Avg.Power [W] 149 1724 1352 946 815 2376 357
Solution1 0.77 0.92 0.91 0.86 0.28 0.94 0.53

SA 0.77 0.75 0.77 0.55 0.48 0.92 0.56
Solution2 0.78 0.92 0.91 0.88 0.66 1.00 0.79

C. Comparison with state of the art

A comparison of performance of Solution 2 with the state-
of-the-art NILM approaches, namely Decision Tree (DT)
approach [8] and HMM-based approach [7] is shown in
Tables IV, V, and VI for REDD Houses 1, 2, 6, respectively.

TABLE IV
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS FOR REDD HOUSE 1.

Appliance REFR MW DW KO WD
FMp 0.88 0.70 0.57 0.39 0.89

FMHMM 0.97 0.50 0.13 0 0
FMDT 0.88 0.85 0.39 0.19 0.88

TABLE V
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P) AND HMM AND

DT-BASED METHODS FOR REDD HOUSE 2.

Appliance ST REFR KO MW DW
FMp 0.86 0.84 0.88 0.93 0.84

FMHMM 0.21 0.90 0.68 0.47 0.04
FMDT 0.33 0.97 0.92 0.97 0.32

TABLE VI
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS FOR REDD HOUSE 6.

Appliance ST REFR KO MW AC EL
FMp 0.92 0.77 0.88 0.91 0.88 0.66

FMHMM 0 0.88 0 0 0.12 0.03
FMDT 0.67 0.99 0 0 0.89 0

The proposed method was also tested using the noisy REFIT
dataset [4]. The REFIT households were monitored remotely
and uninterruptedly, while they were going about their usual
domestic routines. Each house contains numerous appliances
that were not monitored, including oven, lights, chargeable
devices, small electronics, etc., which are considered unknown
and contribute significantly towards noise. Tables VII and VIII
show results for REFIT Houses 2 and 17, respectively. These
two houses were selected as two houses which had relatively
fewer unknown appliances compared to other houses in the
dataset.

TABLE VII
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS REFIT HOUSE 2.

Appliance FRZ WM DW TV MW KE
FMp 0.77 0.55 0.62 0.49 0.95 0.88

FMHMM 0.49 0.26 0 0.06 0.01 0.01
FMDT 0.33 0.73 0.36 0 0.95 0.58

Tables IX, X, and XI show the relative contribution of
known appliances to the total aggregate load, for REDD
Houses 1 and 2 over a period of two weeks and REFIT
Houses 2 and 17 over a period of one month (October
2015). The proposed Solution 2 can disaggregate over 60%
of the household’s total load, demonstrating its effectiveness
in accounting for individual appliance demand.



7

TABLE VIII
COMPARISON BETWEEN THE PROPOSED SOLUTION 2 (P), HMM AND

DT-BASED METHODS FOR REFIT HOUSE 17.

Appliance FRZ FFRZ KE MW WM
FMp 0.64 0.76 0.96 0.81 0.76

FMHMM 0.32 0.19 0.01 0.22 0.01
FMDT 0.81 0.79 0.97 0.71 0.50

TABLE IX
REDD HOUSE 1 AND 2. THE TOTAL DEMAND FOR TWO WEEKS WAS 158

KWH AND 77 KWH FOR HOUSES 1 AND 2, RESPECTIVELY.

REFR MW ST KO DW WD BL UN
H1 14% 8% - 1% 7% 10% 22% 39%
H2 31% 8% 2% 1% 5% - 16% 37%

TABLE X
REFIT HOUSE 2. TOTAL MONTHLY DEMAND WAS 372 KWH.

FFRZ WM DW TV MW KE ES BL UN
7% 4% 12% < 1% < 1% 6% 15% 18% 35%

TABLE XI
REFIT HOUSE 17. TOTAL MONTHLY DEMAND WAS 341 KWH.

FRZ FFRZ KE MW WM EH ES BL UN
15% 7% 8% 2% 2% 11% 8% 21% 27%

With respect to disaggregation accuracy, the ANE measure
given by (15), which measures the discrepancy between the
true consumption and the disaggregated values, is, for REDD
Houses 1 and 2, 7.33% and 6.91%, respectively, and for REFIT
Houses 2 and 17, the ANE is 8.97% and 9.24%, respectively.
These results demonstrate that a very small percentage of the
total load is wrongly disaggregated.

1) Discussion: As can be seen from Tables IV, V, and
VI, the proposed method significantly outperforms the HMM-
based approach for all appliances in the REDD dataset except
the refrigerator. HMM usually performs well disaggregating
the refrigerator due to continuous and sole operation (i.e.,
without any other appliances running) during the night and
hence large data availability for learning and improving initial
models [7], [8]. The poor performance for other appliances
can be attributed to the short training period. The proposed
method shows better or similar performance to the method of
[8] expect for microwave in Houses 1 and 2, and refrigerator
in most houses. These appliances have very small power
fluctuations during operation, and hence the decision tree
classifier based on the rising and falling power edge works
especially well.

Tables VII and VIII show poor HMM results for the
REFIT dataset due to the noise and many unknown appliances.
The proposed solution is again better than or equal to the
benchmark methods for most of the appliances except washing
machine in House 2, where DT performs the best due to very
distinctive high-state washing machine power edges.

The results for both REDD and REFIT dataset demonstrate
that the proposed method provides more accurate disaggre-
gation than the benchmark methods for most appliances. The
difference is especially pronounced for the kitchen appliances,

namely Kettle, Microwave, and Stove. This is due to the
fact that Stove and other kitchen appliances normally have a
short operation time and relatively high power, thus machine-
learning based approaches cannot generate probabilistic mod-
els that accurately capture appliance operation. The HMM-
based approach is sensitive to noise and suffers from a
short training period. The DT-based method works well for
appliances that have small fluctuations in load during their
steady-state operation.

The results for multi-state appliances (dishwasher, washing
machine) are generally worse for all tested algorithms. This is
due to first, the fact that low-power operating states are often
difficult to detect since they are ‘hidden’ in the baseload and
noise. Second, since these appliances are on for a very longer
period, many appliances are likely to run in parallel, adding to
noise. Finally, multi-state appliances are not used frequently,
thus it is more difficult to isolate good training periods.

On the other hand, cold appliances, refrigerator, freezer
and fridge-freezer, are always on and have regular periodic
signatures; thus the algorithms show good accuracy. However,
due to higher level of noise from many unknown appliances,
slightly worse results are obtained for the REFIT dataset with
a higher false positive rate.

The TV in REFIT House 2 is hard to identify since it
has relative low operating power and thus it is often hidden
by noise and baseload. In addition, TV runs usually for a
long period of time, and thus many appliances will run in
parallel. Still, the proposed method is more successful than the
benchmark methods, since it is less sensitive than HMM to the
training dataset that does not have any instances of TV running
alone and it is more successful in resolving the cases when
multiple appliances run in parallel than DT. Electronics in
REDD House 6 include different electronics equipment which
produce complex power signatures that lead to worse results.
The proposed algorithm again shows more robustness than the
benchmark methods in this situation, since it is less sensitive
to fluctuations in steady-state power signature during training
and testing.

Tables IX, X, and XI show that unknown appliances,
including lighting, whose consumption could not be validated,
make up only under 40% of the total load. The ANE results
indicate that the discrepancy between the actual load due
to known appliances and NILM-estimated load is very low.
However, the ANE results of REFIT houses are slightly worse
than in the case of REDD dataset, mostly due to additional
noise from unknown appliances and multi-state appliances,
i.e., washing machine and dishwasher. Note that, each REFIT
house contained over 40 operational appliances (see [4] for
monitoring details), many of which could not be validated via
a time-diary or appliance-level load measurements. Moreover,
considering that lighting, which contributes towards the ‘Un-
known’ category in Table X and XI, accounts for about 20% of
a household’s domestic consumption in October in UK (see [4]
and references therein), the results demonstrate the potential
of the proposed technology in effectively disaggregating smart
meter aggregate loads.
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D. Computational complexity

The proposed algorithm was implemented in Matlab2015b
and executed on an Intel(R) Core(TM) i5-3470 CPU @
3.20GHz machine running Windows 7 64-bit. Table XII shows
the computational time needed to disaggregate the refrigerator,
which is periodically on, in the REDD House 1 for various
testing set sizes N − n. The shaded row shows the accuracy
when the testing dataset of size N − n is split into windows
of 1000 samples each, and each window is independently
processed, this way reducing the dimension of matrix L and
hence lowering the complexity of calculation in (11). The
bottom unshaded row shows the accuracy when the entire
testing dataset is processed in one go - it also shows indirectly
the effect of using only one ‘window’ of size 1000, 2000, 3000
etc. Similar FM values in all cases confirm that splitting the
testing dataset in smaller manageable ‘windows’ significantly
reduces execution time without a loss in performance. The
table also shows that the proposed method performs well
with a small training overhead, i.e., increasing the number of
samples in the testing dataset does not improve performance.
Note that a window size of less than 1000 would not capture
a full run of appliances with long operation period, such as
washing machines or AC.

TABLE XII
COMPUTATION TIME OF THE PROPOSED SOLUTION 2 FOR REFR IN REDD

HOUSE 1. THE SHADED ROWS SHOW RESULTS OBTAINED USING SMALL
WINDOWS OF 1000-SAMPLES EACH. THE BOTTOM ROWS SHOW RESULTS

WHERE THE TRAINING DATASET IS NOT SPLIT.

N − n 1000 2000 3000 4000 5000 6000 7000
Time [s] 1.33 3.22 3.86 4.41 4.99 5.52 6.01
FM 0.89 0.89 0.90 0.90 0.90 0.89 0.89
Time [s] 1.33 16.85 44.81 90.96 153.99 243.88 406.69
FM 0.89 0.89 0.90 0.90 0.90 0.90 0.90

When two weeks of data are used, comprising just over N =
20, 000 samples, the computation time on average for REDD
House 1, 2 and 6, is between 10 to 12 sec for disaggregating
one appliance. This is faster than the HMM-based method
which disaggregates the same amount of data in 40-50 sec, as
reported in [35].

V. CONCLUSION

This paper presented two NILM algorithms based on the
emerging concept of GSP. The first approach minimizes the
total graph variation. The second approach further refines
the total graph variation solution using simulated annealing.
Experimental results show the competitiveness of the methods
with respect to two NILM methods, and were demonstrated
over two datasets with a range of appliances. We also discuss
the relative performance of the proposed methods for different
appliances and how robust the methods are to short training pe-
riods, and how fast this can be implemented through effective
windowing without performance loss. The proposed methods
could work with conventional smart meters, e.g., accessing
10 second data via the Consumer Access Device, and do
not require any additional hardware installation. Future work
will consist of using confusion matrix results of other similar

measures to attempt to identify in more detail weaknesses and
efficient real-time implementation of the proposed algorithms
and integration into smart home decision support systems
for demand response as well as designing advanced energy
feedback mechanisms.
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