Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Distributed negotiation in future power networks : rapid prototyping using multi-agent system

Chen, M. and Syed, M. H. and Guillo Sansano, E. and McArthur, S. D. J. and Burt, G. M. and Kockar, I. (2016) Distributed negotiation in future power networks : rapid prototyping using multi-agent system. In: 2016 IEEE PES Innovation Smart Grid Technologies Conference Europe. IEEE, Piscataway, NJ..

[img]
Preview
Text (Chen-etal-ISGTE2016-Distributed-negotiation-in-future-power-networks-rapid-prototyping-using-multi-agent-system)
Chen_etal_ISGTE2016_Distributed_negotiation_in_future_power_networks_rapid_prototyping_using_multi_agent_system.pdf - Accepted Author Manuscript

Download (473kB) | Preview

Abstract

Technologies like multi-agent system (MAS) have the capability to deal with future power grid requirements such as frequency management and voltage control under a flexible, intelligent and active feature. Based on web of cells (WoC) architecture proposed by European Liaison on Electricity Committed Towards longer-term Research Activity Integrated Research Programme (ELECTRA IRP), a distributed MAS with distributed negotiation ability for future distributed control (including frequency management and voltage control) is proposed. Each cell is designed as an intelligent agent and is investigated in case studies with constraints, where each agent can only communicate with its neighbouring agents. The interaction logic among agents is according to the distributed negotiation algorithm under consideration by the authors. Simulation results indicate that the WoC architecture could negotiate resources in a distributed manner and achieve successful exchange of resources by coordinating distributed agents. Moreover, the prototype reported in this paper can be extended further for future grids' distributed control regimes. The option of MAS to be exploited for the support of the development and integration of novel power system concepts is explored.