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Abstract—The rotation of blades of a helicopter induces a 

Doppler modulation around the main Doppler shift, which is 

commonly called the micro-Doppler signature and can be used 

for target classification. In this paper, an automatic helicopter 

classification method is proposed by estimating the period of the 

micro-Doppler signature and identifying the number of blades 

via time-frequency masks. The advantages of this method are 

threefold: (1) it determines the number of blades automatically; 

(2) it significantly reduces the computational burden compared 

to the classical model dictionary-based classification methods; (3) 

it is robust with respect to the inclination of the helicopter. The 

effectiveness of the proposed approach is validated by using both 

synthetic and real data. 

I. INTRODUCTION 

In radar applications, mechanical vibration or rotation of a 

target or its parts introduces additional frequency modulation 

of the received signals. This phenomenon is referred to as the 

micro-Doppler effect [1]. Micro-Doppler parameters such as 

Doppler repetition period, Doppler amplitude, and initial 

phase directly indicate unique characteristics of the target and, 

therefore, can be exploited for civil and military purposes such 

as target classification and identification [2].  

The radar return of a helicopter contains micro-Doppler 

components generated by its rotor blades, which provides 

important information to facilitate helicopter classification 

[3]-[6]. In [3], the L/N-quotient helicopter classification 

method is presented to classify helicopters, where N denotes 

the number of blades and L is the length of each blade. 

However, the L/N-quotient may be the same for two different 

helicopter models [3], and the value of L/N is subject to the 

angle that the line of sight (LOS) forms with the plane on 

which the blades lie, which reduces the robustness of the L/N-

quotient based method. A classification scheme based on 

time-frequency analysis is proposed in [4], where the micro-

Doppler parameters are extracted in time-frequency domain. 

This method allows the identification of the parity of the 

number of blades, i.e., whether the number is even or odd, 

according to the time-frequency distribution of the flashes. 

But automatic classification is not considered in detail and 

some procedures still require manual intervention. In [5], 

helicopter classification using a high resolution continuous 

wave radar is addressed. It employs two matched masks in 

slow time-range domain to solve the classification problem 

where the two helicopter classes could be easily confused with 

each other. However, this method still requires estimation of 

the L/N-quotient, which is influenced by the inclination of the 

helicopter with respect to the LOS.  In [6], the authors derive a 

maximum likelihood (ML) algorithm for estimating helicopter 

parameters, and several information theoretic criteria are 

considered for blade number selections.  

Recently, considering that the micro-Doppler signatures of 

helicopter blades have sparse properties, a model-based 

classification algorithm was introduced in [7], where a sparse 

signal model for received helicopter echoes was designed and 

used in conjunction with a greedy sparse signal recovery 

algorithm to extract the micro-Doppler parameters. This 

method enables high classification accuracy without prior 

information about the inclination of the helicopter. However, 

it does not take the parity of the number of blades into 

consideration, which may cause ambiguity in classification 

processing. Moreover, this method employs a large dictionary 

of target models, thus its computational burden is rather heavy. 

In this paper, we propose an automatic helicopter 

classification approach based on period estimation and time-

frequency masks. Since the period is independent of the 

inclination of the helicopter, it is extracted as a feature for 

target classification. Then, inspired by the observation that the 

parity of N can be identified in time domain and the value of 

N can be determined in time-frequency domain, correlation 

coefficients and time-frequency tools are jointly used to 

determine the value of N. Finally, the target is classified based 

on the values of N and ω.  The contributions of this paper are 

threefold: (1) compared to [3]-[5], [7], the proposed method 

determines the number of blades automatically; (2) compared 

to [6]-[7], the computational burden is significantly reduced; 

(3) compared to [3]-[5], our method is robust with respect to 

the inclination of the helicopter with respect to the LOS.  

The remainder of the paper is organized as follows. In 

Section II, the background related to micro-Doppler signal 

model and time-frequency analysis is introduced. Then the 

proposed method is presented in detail in Section III. 

Experimental results on synthetic and real data are given in 

Section IV to validate the proposed approach. Concluding 

remarks are provided in Section V. 

mailto:carmine.clemente@strath.ac.uk


II. BACKGROUND 

A. Signal Model 

Assuming that a helicopter has already been detected in a 

certain radar cell, and the micro-Doppler parameters (N, ω, L) 

represent the number, the rotational speed and the length, 

respectively, of the blades of the helicopter, the echoes from 

the blades can be expressed as [1]:  
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where λ is the carrier wavelength of the radar system, tm 

denotes the sampling instant with sampling frequency fs, M is 

the length of the received signal, and sinc(α) = sin(α)/α. R0 is 

the range of the target and β is the aviation angle, defined as 

the angle formed by the LOS and the plane on which the 

blades lie. In addition, σ is the scattering coefficient of the 

blades, θ is a random phase which accounts for the initial 

position of the blades, and Φn(tm) denotes the phase function 

of the echoes from the n-th blade.  

The instantaneous frequency corresponding to the n-th 

blade can be directly obtained by taking the time derivative of 

Φn(t): 

  ,

2
cos sin ,mD n m m

L n
f t t

N

 
  



 
    

 
  (3) 

It is obvious from (3) that the maximum Doppler shift of the 

received signal is  
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To avoid frequency aliasing, the sampling frequency is set to 

fs ≥ 2fmD,max. As depicted in (1) and (2), the received signal is 

periodic and the period is  
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It can be seen from (4) and (5) that the L/N quotient is 

related to β, thus the L/N quotient-based classification scheme 

is not robust to the inclination of the helicopter. In contrast, it 

is obvious from (5) that T is independent of β and determined 

by N and ω. Based on this fact, T is extracted as a target 

feature for classification in this paper. 

B. Time-frequency Analysis 

In order to represent the time-varying Doppler and 

magnitude behaviours of the received signals, the Short Time 

Fourier Transformation (STFT) of the received signal is 

employed in this paper [1]: 
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where w(t) is a window function, P is the number of frequency 

bins. In comparison to the waveform and the spectrum, the 

time-frequency representation provides more details about the 

received signal. To show the superiority of time-frequency 

analysis, let us consider the following two target models: 1) 

H1, a two-bladed helicopter with parameters (N1, ω1, L1); 2) 

H2, a four-bladed helicopter with parameters (N2, ω2, L2) = 

(2N1, ω1/2, 2L1). According to (4) and (5), the received signals 

from H1 and H2 have the same maximum Doppler shift fmD,max 

and period T. Therefore, the major signatures of H1 and H2 in 

time-domain and frequency-domain are highly similar to each 

other, and it is difficult to distinguish them by using waveform 

or spectrum analysis alone. However, since the received 

signals from H1 and H2 have different instantaneous 

frequencies, they are distinguishable in time-frequency 

domain.  

III. THE PROPOSED METHOD 

The proposed classification approach can be divided into 

four stages: A) synchronization; B) period estimation; C) 

blade number determination; and D) classification. 

A. Synchronization 

According to (1) and (2), the flashes of the received signal 

appear at those instants when one of the phase functions, i.e. 

Φn(tm) equals ±π/2. In order to make the classification method 

independent of the initial phase of the blades, the instant t = 0 

is synchronized with the first flash of the received signal as 

described in [7].  

B. Period estimation 

In this paper, the value of T is estimated by using the 

autocorrelation function of the y(tm) [1]: 
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where τk = k/fs, and * denotes the conjugate operation. 

Because y(tm) is periodic with period T, the highest peak of c(τ) 

appears at τ = 0, and other peaks appear at τ = kT, k =1,2…. 

Therefore, the period T can be estimated by measuring the 

distance between the neighbouring peaks of the 

autocorrelation function. 

C. Blade number determination 

According to (5), after the period estimation, the value of 

Nω can be directly derived from T. Then the following two 

steps are carried out: first, the parity of N is identified by 

using correlation coefficients in time-domain; second, the 

value of N is determined by employing time-frequency masks. 

1)  Identifying the parity of N 

We assume that the initial phase θ = π/2 and the period T 

has been estimated, then the signal model in (1) can be 

rewritten as 
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where d=2πLcosβ/λ, and the rotational speed ω is related to  N 

and T according to (5). To measure the dependence between 

the received signal y(tm) and the signal model yT,N,d(tm), the 

following correlation coefficients are calculated: 
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where d is set less than NTfs/4 so that fmD,max is less than fs/2 

and frequency aliasing can be avoided. It is obvious that cT,N 

represents the maximum relevance between y(tm) and the 

signal model which has the same period T as y(tm) and number 

of blades N.  

TABLE I 
SIMULATION PARAMETERS 

Parameter Value 

fs 8000Hz 

M 2000 

SNR from -10 dB to 10 dB with a step size of 2.5 dB. 

N randomly selected from {2, 4, 6} or {3, 5, 7}. 

T uniformly distributed in [0.1, 0.5]·M/fs. 

ω 2π/NT 

d uniformly distributed in [0.1, 1]·NTfs/4. 

θ π/2 
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Fig. 1.  Correlation coefficients between the received signal and the target 

models under different SNRs.  

To demonstrate the properties of cT,N, we perform a set of 

simulations. The received signal y(tm) is synthesized with 

parameters listed in TABLE I, and the correlation coefficients 

{cT,2, cT,3,…, cT,7} are calculated. The values of {cT,2, cT,3,…, 

cT,7} are averaged over 50 trials for each SNR, and the results 

are shown in Fig.1. Two conclusions can be obtained from Fig. 

1: (1) cT,3 ≈ cT,5 ≈ cT,7, cT,2 ≈ cT,4 ≈ cT,6; (2) if N is odd then 

cT,3 > cT,2, else cT,3 < cT,2. 

Based on the above observations, we can identify the parity 

of N by using the following algorithm: 

Algorithm I: parity identification 

input: synchronized signal y(tm) and its period T. 

Step 1: calculate cT,2 and cT,3 according to (9). 

Step 2: if cT,2 > cT,3, then N is even, otherwise N is odd.  

output: parity of the number of blades. 

2)  Determination of the value of N 

It is clear from Fig. 1 that the value of N cannot be 

determined via correlation coefficients in time domain. 

Inspired by the fact that the instantaneous frequencies of 

different targets are distinguishable, time-frequency masks are 

employed. We assume that θ = π/2, T has been estimated and 

d has been calculated according to (9), then the time-

frequency masks are configured as the STFT of yT,N,d, denoted 

as STFTT,N,d(tm, fp). Denoting the STFT of the received signal 

y(tm) as STFT(tm, fp), the correlation coefficients are calculated 

in the time-frequency domain: 
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Then the value of N can be determined as follows: 

  , ,argmax T N d

N

N b   (11) 

It is worth emphasizing that: 1) since the parity of N has 

been identified, only those numbers with the same parity as N 

need to be considered in (11); 2) when calculating the values 

of STFT, the flashes of yT,N,d(tm) and y(tm) should be cut off to 

avoid interference.  

D. Classification 

At the end of the first three steps, the period T and the 

number of blades N have been estimated. Let (Nv, ωv) 

(v=1,2,..,V) be the parameters corresponding to V known 

helicopters, the classification is obtained based on T and N: 
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The parameter L and β are not used in (12), but they have to 

be kept in the model in order to evaluate both N and ω.  

E. Remarks 

It can be seen from (10) that the time-frequency mask 

algorithm proposed in this paper belongs to matched filtering 

methods, which is optimum processing for a maximum output 

signal-to-noise ratio criterion as presented in [8]. In addition, 

several time-frequency tools besides STFT, such as Wigner-

Ville distributions (WVD), can also be used in (10) as 

discussed in [9]. 

IV.  RESULTS 

A. The Results with Simulated Data 

The algorithm is tested by simulated data. For different 

values of the SNR, 90 trial radar signals with a carrier 

frequency of 5 GHz are generated, 10 for each target listed in 

TABLE II. The values of θ and β are considered to be 

unknowns and are chosen randomly, in particular the latter 

ranges in [0°, 70°]. The duration and the sampling frequency 

are chosen equal to 0.25s and 8 kHz, respectively. When 

calculating the STFT, a 32-points Hanning window is used 

and the number of frequency bins is set to be 64. 



The performance in terms of classification accuracy is 

shown in Fig. 2. Even at SNR=-10 dB, the helicopters are 

correctly classified with an accuracy of 82.2% It is clear that 

the classification accuracy of the proposed method is better 

than that of the method proposed in [7].  

TABLE II 

TARGET PARAMETERS 

Name N ω L 

AH-1 Cobra 2 7.32 4.9 

Mil MI-2 Hoplite 3 3.30 4.1 

AH-64 Apache 4 7.32 4.8 

UH-60 Black Hawk 4 8.18 4.3 

SA365 Dauphin 4 5.97 5.8 

A109 Agusta 4 5.50 6.4 

AS332 Super Puma 4 7.80 4.4 

MD 500E Defender 5 4.03 8.2 

CH-53 Stallion 7 12.04 2.9 
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Fig. 2. Classification accuracies of our method and the method proposed in [7] 

versus SNR. 

TABLE III 

TARGET PARAMETERS 

Target N ω 

A 2 9.12 

B 2 12.42 

C 3 9.12 

D 3 12.42 

E 3 9.12 

F 3 12.42 

G 2 7.92 

H 2 10.77 

B. The Results with Real Data 

The validity of the approach is also shown with real data. 

Signals from the two-bladed helicopter scale model GAUI X3 

are acquired with a 24 GHz radar. The database which 

contains the parameters of the helicopters to classify is shown 

in TABLE III: targets A and B correspond to the observed 

models; targets from C to H present either equal rotation 

speeds but different number of blades or the same number of 

blades with similar rotation speeds of the true targets A and B, 

in order to test the reliability of the algorithm. The signal 

length and the sampling frequency are chosen equal to 0.4s 

and 5.5 kHz, respectively. Three data acquisitions are made 

for each speed, at three different aviation angles β. From each 

acquisition, whose total length is 20 seconds, 50 segments of 

0.4 seconds are extracted as the inputs of the classification 

algorithm. The parameters used in the STFT are the same as 

that in Section IV Part A. 

TABLE IV 

CLASSIFICATION ACCURACY 

Target β=0° β=30° β=60° 

A 98% 100% 100% 

B 100% 100% 100% 

The rates of successful classification are shown in TABLE 

IV, which clearly demonstrate the effectiveness of out method. 

V. CONCLUSION 

In this paper, a novel method for helicopter classification 

was presented based on period estimation and micro-Doppler 

masks. The period of the received signal was estimated via the 

autocorrelation function and used to derive the product of the 

rotational speed and number of blades. Then the parity and the 

value of the number of blades were identified by using 

correlation coefficients and time-frequency masks, 

respectively. Finally, classification was accomplished based 

on the rotational speed and number of blades. This method 

determines the number of blades automatically and is 

independent of the inclination of the helicopter. Experiments 

with both synthetic and real data confirm the validity of the 

proposed method. 
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