Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Helicopter classification via period estimation and time-frequency masks

Zhang, Rui and Li, Gang and Clemente, Carmine and Varshney, Pramod K. (2015) Helicopter classification via period estimation and time-frequency masks. In: 6th IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2015), 2015-12-13 - 2015-12-16.

[img]
Preview
Text (Zhang-etal-CAMSAP-2015-helicopter-classification-via-period-estimation-and-time-frequency-masks)
Zhang_etal_CAMSAP_2015_helicopter_classification_via_period_estimation_and_time_frequency_masks.pdf - Accepted Author Manuscript

Download (582kB) | Preview

Abstract

The rotation of blades of a helicopter induces a Doppler modulation around the main Doppler shift, which is commonly called the micro-Doppler signature and can be used for target classification. In this paper, an automatic helicopter classification method is proposed by estimating the period of the micro-Doppler signature and identifying the number of blades via time-frequency masks. The advantages of this method are threefold: (1) it determines the number of blades automatically; (2) it significantly reduces the computational burden compared to the classical model dictionary-based classification methods; (3) it is robust with respect to the inclination of the helicopter. The effectiveness of the proposed approach is validated by using both synthetic and real data.