Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

GeoSail: exploring the geomagnetic tail using a small solar sail

McInnes, C.R. and Macdonald, M. and Angelopoulos, V. and Alexander, D. (2001) GeoSail: exploring the geomagnetic tail using a small solar sail. Journal of Spacecraft and Rockets, 38 (4). pp. 622-629. ISSN 0022-4650

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Conventional geomagnetic tail missions require a spacecraft to be injected into a long elliptical orbit to explore the spatial structure of the geomagnetic tail. However, because the elliptical orbit is inertially fixed and the geomagnetic tail is directed along the sun-Earth line, the apse line of the elliptical orbit is precisely aligned with the geomagnetic tail only once every year. To artificially precess the apse line of the elliptical orbit in a sun-synchronous manner, which would keep the spacecraft in the geomagnetic tail during the entire year, would require continuous low-thrust propulsion or periodic impulses from a high-thrust propulsion system. Both of these options require reaction mass that will ultimately limit the mission lifetime. It is demonstrated that sun-synchronous apse-line precession can be achieved using only a small, low-cost solar sail. Because solar sails do not require reaction mass, a geomagnetic tail mission can be configured that provides a continuous science return by permanently stationing a science payload within the geomagnetic tail.