Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Micro-abrasion transitions for metallic materials

Stack, M.M. and Mathew, M.T. (2003) Micro-abrasion transitions for metallic materials. Wear, 255 (1-6). pp. 14-22. ISSN 0043-1648

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Significant progress has been made in the understanding of micro-abrasion transitions of various materials in recent years, where abrasion is caused by particle sizes which are typically less than 10 μm. Research has shown reasonable consistency on effects of applied load and sliding distance, for studies carried out in various laboratories. In addition, attempts have been made to construct abrasion "diagrams" showing the transitions between the various regimes as a function of the above parameters. A puzzling aspect of the results to date, however, is the effect of "ridge" development on the micro-abrasion wear pattern. This ridge formation leads to a reduction in wear rate because the size of abrading particles, which account for the three-body effect, is less than the size of the ridge developed as a result of the wear process. The particles thus become lost in the ridge and cause no further abrasion. In this paper, the transition to ridge formation, as a function of sliding distance and load, is described for a range of pure metals of different hardness, using a TE-66, Plint micro-abrasion test rig. Tally-surf and optical microscopy techniques were used to measure the wear rate. Micro-abrasion maps were constructed showing differences in the transition boundaries between the wear regimes, and the implications of such results, for predictive modelling of micro-abrasion, are addressed in this paper.