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Abstract—The capability to recognize ballistic threats, is a
critical topic due to the increasing effectiveness of countermea-
sures and to economical constraints. In particular the ability
to distinguish between warheads and decoys is crucial in order
to mitigate the number of shots per hit and to maximize the
ammunition capabilities. For this reason a reliable technique to
classify warheads and decoys is required. In this paper the use of
micro-Doppler signatures in conjunction with the 2-Dimensional
Gabor transform is presented for this problem. The effectiveness
of the proposed approach is demonstrated through the use of real
data.

I. INTRODUCTION

The interest in recognition and classification of ballistic
targets has grown in the last years. In particular, significant
attention has been given to the challenge of distinguishing be-
tween warheads and decoys. The latter are comprises object of
different shapes released by the missiles in order to introduce
confusion in the interceptors. Since it is clear that warheads
and decoys make specific micro-motions during their ballistic
trajectory, the micro-Doppler effects analysis introduced in [1],
and widely investigated in the last decade [2], may be used for
the purpose of information extraction for target classification.
Specifically, the warheads may be characterized by precession
and nutation, while the decoys wobble, as described in [3] and
[4]. Such a different micro-motions introduce different micro-
Doppler signatures in the returned radar signal.

Classification based on micro-Doppler signatures has been
employed in [5] and [6] for feature extraction based on the
Pseudo-Zernike moments.

In this paper, a novel algorithm for radar micro-Doppler
classification based on the processing of the Cadence Velocity
Diagram (CVD) with Gabor filter is presented. The Gabor filter
has been successfully employed to extract reliable features in
many different applications [7],[8],[9]. In particular, they have
been usually used for texture and symbol classification, as
in [7] and [10], and for face recognition in [11]. The scale,
translation , rotation and illumination properties of the filter
have been utilised in these applications. The Gabor filter are
capable of extracting local information from the micro Doppler
signature of the target of interest [12].

The remainder of the paper is organized as follows. Section
II reviews the relevant 2-D Gabor Filter theory, while Section
III describes the novel feature extraction algorithm. In Section
IV the effectiveness of the proposed approach is demonstrated
on the real data. Section V concludes the paper.

II. GABOR FILTER GLOBAL FEATURE

The 2-D Gabor function is the product of a complex expo-
nential representing a sinusoidal plane wave and an elliptical
Gaussian in any rotation. The filter response in the continuous
domain can be normalized to have a compact closed form
[7],[11]
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with

x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ) (2)

where f is central spatial frequency of the filter, θ is the anti-
clockwise rotation of the Gaussian envelope and the sinusoidal
plane wave, γ is the spatial width of the filter along the plane
wave, and η is the spatial width perpendicular to the wave. The
sharpness of the filter is controlled on the major and minor
axis by η and γ defining the aspect ratio of the Gaussian as
λ = η/γ. The normalized filter harmonic response is [7]
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where

u′ = u cos(θ) + v sin(θ), v′ = −u sin(θ) + v cos(θ). (4)

Figure 1 represents the Gabor filter response in the XY
plane, with η = γ = 2π and central normalized frequency f =
1 and for different orientation angle. In particular, from Figure
1a and Figure 1b, it is clear that the variation of orientation
angle leads to a rotation of filter response.

In the following subsections the classification algorithm
based on features extracted by the Gabor filters is presented.

III. FEATURE EXTRACTION ALGORITHM

The principal aim of the algorithm presented in this paper is
to extract features based on micro-Doppler by using 2D Gabor
filters. For this reason, a fundamental step is to obtain a 2D-
image from the received radar signal scattered by the targets
of interest that represents each types of them unequivocally.
A block diagram of the algorithm is shown in Figure 2. The
starting point of the algorithm is the received signal srx(n),
with n = 0, ..., N − 1, containing micro-Doppler components
and where N is the number of signal samples. The first step is
to evaluate the spectrogram calculating squared modulus of the



(a) θ = 0◦ (b) θ = 45◦

Figure 1: Gabor filter response in the XY plane, with η = γ =
2π and central normalized frequency f = 1

Figure 2: Block scheme of the proposed algorithm.

STFT (Short Time Fourier Transform) of the received signal
srx(n) as follows:
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where ν is the normalized frequency and wh(.) is the smooth-
ing window. The spectrogram is a time-frequency distribution
that allows us to evaluate the signal frequency variation on time
and it is chosen for its robustness with respect to interference
terms present in other time-frequency distributions. The next
step extracts the CVD (Cadence Velocity Distribution), that
is defined as the Fourier Transform of the spectrogram along
each frequency bin [5] and is given by
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where ε is the cadence frequency. The choice of CVD is
motivated by the possibility of extracting useful information
such as the cadence of each frequency component and the
maximum Doppler shift, Moreover, the CVD is more robust
than the spectrogram since it does not depend on the initial
phase of moving object. Thereafter, the continuous component
is filtered out and the CVD is normalized in order to obtain a
matrix whose values lie in the range [0, 1] as follows

∆̄(ν, ε) =
∆(ν, ε)−min

ν,ε
∆(ν, ε)

max
ν,ε

∆(ν, ε)
(7)

Each element of the obtained matrix ∆̄ is considered as a
pixel of a 2D-image and this image is given as input to a
bank of Gabor filters whose responses change by varying the
orientation angle and the central frequency, as in (1). The value
of each pixel of the output image is given by the convolution
product of the Gabor function and the input image, ∆̄(ν, ε),
and may be written as follows

gl,m(ν, ε; fl, θm) = ψl,m(ν, ε; fl, θm) ∗ ∆̄(ν, ε) = (8)∫ ∞
−∞

∫ ∞
−∞

ψl,m(ν − ντ , ε− ετ ; fl, θm)∆̄(ντ , ετ )dντdετ ;

with l = 0, . . . , L−1 and m = 0, . . . ,M−1, where L and M
are the numbers of central frequencies and orientation angles
considered, respectively. The principal aim of the variation
of fl and θm for each filter is to extract all the information
contained in the CVD. Finally the output of the filters are
processed to extract the feature vector used to classify the
targets, which is the last step of proposed algorithm. In
particular, a global feature is extracted from the output image
of each filter by adding up the values of all pixels, as follows

Fq = gl,m =
∑
ν

∑
ε

|gl,m(ν, ε; fl, θm)| (9)

where q = mL+l, with l = 0, . . . , L−1, and m = 0, . . . ,M−
1. Therefore, the obtained feature vector is given by

F =
[
F0 F1 · · ·F(L×M)−1

]
(10)

Finally the feature Vector is normalised before it is used in the
classifier as follows:

F̃ =
F − ηF
σF

(11)

where ηF and σF are the statistical mean and standard
deviation of the vector F , respectively.

The classification performances of the extracted feature
vectors is evaluated using k-Nearest Neighbour (kNN) clas-
sifier, modified in order to account for unknowns. Let N be
the set of nearest neighbour training vectors for the feature
vector F, that is:

N =

{
F̃1, . . . , F̃k : min

F̃∈T

∥∥∥F̃− F
∥∥∥} (12)

where T is the training vectors set; moreover, let ρ =
[ρ1, . . . , ρk] be the labels of the vectors in N , which can
assume values in the range [1, . . . , V ], where V is the number
of possible classes. The unknown class is made in two steps.
First at each label ρi, i = 1, . . . , k is updated as follows:

ρi =

{
0 F̃i /∈ SCMρi

(ζρi)

ρi otherwise
(13)

where SCMv
(ζv) is an hypersphere with centre CMv and

radius ζv , and CMv is the centre of mass of the training
vectors belonging to the class v. Secondly, let s be a (V + 1)-
dimensional score vector whose elements are the occurrences,
normalised to k, of the integers [0, . . . , V ] in the vector ρ;
eventually, the estimation rule is implemented as follows:

v̂ =

{
arg max s if ∃!(max s) > 1

2

0 otherwise
(14)



where 0 is the unknown class.
Assuming that the feature vectors of each class are dis-

tributed uniformly around their mean vector, for all the anal-
yses ζv was chosen equal to σv

√
12/2, where σv = tr (Cv)

and Cv is the covariance matrix of the training vectors which
belong to the class v. The choice has been made according to
the statistical proprieties of Uniform distribution. In fact, for
one dimensional uniform variables the sum of mean and the
product between the standard deviation and the factor

√
12/2

gives the max possible value of distribution. Moreover, in
order to consider the unknown class using a kNN classifier,
k has to be usually an integer major than 1; than, k was set
to 3. The choice of a K-NN classifier is justified for its low
computational load and its capability of providing score values
as an output. However, in general other classifiers with similar
characteristics could also be selected.

IV. EXPERIMENTAL RESULTS

In this section the effectiveness of the proposed algorithm is
demonstrated using real data. The data has been realized using
reproductions of targets of interest. Particularly, two possible
types of warheads have been considered, approximated by a
simple cone and cone with triangular fins at the base, while
three types for the decoys, approximated by cylinder, cone and
sphere.

According to the used model, the conical warhead has a
diameter, d, of 1 m and the height, h, of about 0.75 m, while
the fin’s base, bf , is 0.20 m and the height, hf , is 0.50 m, as
shown in Figure 3. The sizes of decoys are usually comparable

Figure 3: Model for two type of warheads.

with warheads in order to increase the number of false alarms.
Therefore, according to the used model both the cylindrical
and conical decoys have diameter and height 0.75 m and 1 m
respectively, while the sphere diameter is 1 m, as shown in
Figure 4.

The analysis of performance of the proposed features has
been conducted for an S-Band system with carrier frequency of
3.3 GHz. Since echoes were measured from targets of interest
for several angles of azimuth and elevation using a 24 GHz
Continuous Wave (CW) radar, the dimensions of the targets’
reproductions are scaled by a factor equal to 0.1375.

In particular, 10 acquisitions of 10 seconds have been made
for each targets and for each possible couple of azimuth and
elevation angles using three possible values for both of them,
which are [0◦; 45◦; 90◦], and using a sampling frequency 2.2

Figure 4: Model for three type of decoys.

kHz. The different movements of warheads and decoys have
been simulated by using ST robotic manipulator R-17 and an
added rotor motor [13].

The precession angle chosen for both of the types of
warheads is 10◦ while the precession frequency is about
0.25 Hz. The angular velocity of spinning is 1 Hz while the
nutation frequency is 10 Hz. Instead, in the case of decoys, the
symmetric axis of latter normally is considered on the plane
of rotation and the wobbling velocity is 1 Hz.

A. Results

In this section the proposed algorithm is compared with
Pseudo-Zernike (PZ) moments based feature vector approach,
presented in [5]. The targets of interest for the described
analysis are divided in two classes which are the Warhead and
Decoy. Moreover, both of them are subdivided in sub-classes,
and in particular the Warhead comprises two sub-classes, one
for warheads without the fins and the other for those with
them, while Decoy comprises three sub-classes each of them
associated with one of the three different types of considered
decoys.

In order to analyse the performances of proposed algorithm
three figures of merit are considered which are the probabilities
of Correct Classification (PC), Correct Recognition (PR), and
Unknown Probability (PU ). In particular, according to the
following definition of probability

# number of occurances
# number of analysed cases

, (15)

PC is defined as the number of correct classified objects
over the total number of analysed objects considering the two
principal classes, while the second probability is calculated
considering the classification on the five sub-classes; finally,
the third figure of merit is given by the ratio of number
of analysed objects for which the classifier does not take a
decision and the total number of them.

In order to statistically characterize the classifier and its
performance, a Monte Carlo approach has been used, calcu-
lating the mean and standard deviation of the three figures of
merit on several cases. In particular, 50 different analysis cases
have been evaluated in which all the available samples have
been dived randomly with 70% used for training and the other
30% for testing.

The spectrogram is computed using a Hamming window
of length W = 200, with 75% overlap, and a varying number
of points for the DFT computation, Nbin, which depends
by both the used Hamming windows and the number of



signal samples in order to obtain a square matrix for the
spectrogram. Particularly, in the case in which the entire 10
seconds observation window has been considered, Nbin is
437, while for 5 and 2 seconds windows are 217 and 85,
respectively.

The algorithm is tested with respect to the variation of the
available observation time considering the entire 10 seconds
observation window and other two shorter windows whose
duration are 5 and 2 seconds, respectively. Furthermore, The
analysis has been conducted on varying the SNR and on
varying the dimension of the bank of filters, which depends
on the chosen orientation angular pass θ. As consequence, the
number of filters, Q, is given by

Q = M ×
(⌈

π/2

θ

⌉
+ 1

)
(16)

where dxe is the Ceiling Function which gives the largest
integer ≥ x, θ is the orientation angular step and M in
the number of central frequencies. The latter is fixed for the
analysis, particularly 4 frequencies are used whose values are
0.5, 1, 1.5 and 2, while the integer values of θ varies in the
interval [3◦, 10◦].

Figure 5 shows the PC and the PR versus the dimension of
the used bank of Gabor filters for different signal’s duration.
Analysing the results, it is possible to note that the average
correct classification is greater than 0.98 for any value of
Q and for both the signal’s duration of 10 and 5 seconds;
classification performance slightly decreases for the 2 sec-
onds observation time case, due to the reduced amount of
micro-Doppler information contained in the analysed signal.
Moreover, the performance has shown that the PU is always
under 0.02 for all values of both the number of filters and
the signal’s durations. Figure 6a shows the performance on
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Figure 5: Probability of correct Classification PC and of
correct Recognition PR on varying of Q and duration of
observation window.

varying the SNR and Q = 124. In particular, assuming that
the noise is negligible for the acquired signals, the analysis
over the SNR has been conducted by adding white Gaussian
noise. It is clear that the performance in terms of PC and PR
slightly decreases as the signal’s duration decreases while it
improves by increasing the SNR, especially they are greater
than 0.99 when the SNR is above 0 dB. However, while for 10
seconds the performance remains almost constant, it decreases
for signals of 5 and 2 seconds and for lower values of SNR.

Figure 6b shows the performance of the PZ based algorithm
for moments order of 10, which means that the length of the
feature vector is (order + 1)2 = 121. From the figure, it is
noted that for this algorithm the performance increases with the
SNR. However, the PC and PR for a comparable dimension
of the feature vector are greater using the algorithm based on
Gabor Filter for any value of SNR.
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(a) Gabor features, Q = 121
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Figure 6: Probability of correct Classification PC and of cor-
rect Recognition PR on varying of SNR and signal’s duration.

Finally, Figure 7 represents the PU for both the algorithms
when the SNR and the observation time are varied. As shown,
while for the proposed method the PU is smaller than 0.01
in any analysed case, for the PZ features the performance im-
proves by increasing both the signal’s duration and SNR. The
PU becomes smaller than 0.01 for any analysed observation
time when SNR is greater than 5 dB, however it is worse
compared to the performance obtained with the Gabor features.

V. CONCLUSION

In this paper a novel algorithm used to extract robust
feature based on micro-Doppler signature is presented. In
particular, the algorithm take advantage of 2D Gabor filter
applied on normalized Cadence Velocity Diagram evaluated
from the received signal. The reliability of novel features has
been demonstrated by testing them on real micro-Doppler data
with the aim to classify between warheads and decoys. The
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Figure 7: The Unknown Probability, PU , on varying of SNR
and signal’s duration for algorithms using feature based both
on Gabor filters both on Pseudo-Zernike moments of order of
10.

performance has shown that the features generally ensure to
classify correctly with a probability greater than 0.99 between
different classes and, in particular, the performance is high
also for low value for SNR considering signals whose duration
is bigger than 5 seconds. The proposed algorithm has been
compared with the method which uses the Pseudo-Zernike
moments based feature vector showing that the novel approach
ensures better performance for the same number of features.
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