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Abstract

This paper investigates daily volt/var control in distribution networks using feeder

capacitors as well as substation capacitors paired with on-load tap changers. A two-

stage coordinated approach is proposed. Firstly, the feeder capacitor dispatch schedule

is determined based on reactive power heuristics. Then, an optimisation model is

applied to determine the dispatch schedule of the substation devices taking into account

the control actions of the feeder capacitors. The reference voltage of the substation

secondary bus and the tap position limits of transformers are modified such that the

model adapts to varying load conditions. The optimisation model is solved with a

modified particle swarm optimisation algorithm. Furthermore, the proposed method

is compared with conventional volt/var control strategies using a distribution network

case study. It is demonstrated that the proposed approach performs better than the

conventional strategies in terms of voltage deviation and energy loss minimisation.

Keywords: Capacitor; Distribution network; Energy loss; On-load tap changer;

Particle swarm optimisation; Volt/var control.

1. Introduction

Control of volt and var devices such as on-load tap changers (OLTC) and shunt ca-

pacitors affects the voltage profile and the total power loss in distribution networks[1].

∗Corresponding author
Email address: u24062147@tuks.co.za (Lesiba Mokgonyana)

Preprint submitted to Electric Power Systems Research March 20, 2016



Dispatch of the volt/var control (VVC) resources can be performed in a coordinated

manner in constrained environments to meet specific operational objectives [2, 3, 4,5

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The complexity of the objective func-

tion, constraints, and computation is influenced by, among others: regulatory limits,

switching limitations and available control devices. The focus of this paper is daily

VVC with switching restrictions, which is usually applied to networks with widespread

communication and control coverage [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The ad-10

ditional requirement of this VVC approach is a day-ahead forecast of load behaviour,

which is made possible by the existence of load forecasting techniques that provide good

accuracy [18], [19].

Daily coordinated control of all distribution devices is computationally complex, but

there are a number of ways to deal with this difficulty. One way to approach this is to15

simplify the solution space so as to reduce the computational burden. For instance, the

requirements of dynamic programming can be eased according to [8], [9], [11], while a

more efficient solver based on the interior-point method is presented in [17]. In [10] the

number of possible states is decreased by combining artificial neural networks, a rule-

based method and dynamic programming. Use of heuristic rules can also reduce the20

number of possible device operations, therefore simplifying the optimisation model [13].

These methods address the issue of computational complexity but the requirements

for remote control infrastructure remain for network-wide implementation. Another

alternative is to divide the scheduling problem into two sub-problems: one handling

the dispatch of the substation capacitor (SC) and OLTC, and the other controlling the25

feeder capacitors (FCs) [12]. In particular, dispatch of the substation devices minimises

reactive power-flow and the voltage deviation at the substation bus. FCs are then

dispatched based on local bus voltage and power factor deviations using a fuzzy control

scheme after the substation devices have been dispatched. The final states of the FCs

are found when the bus voltage is within permissible limits. In [20] the total loss and30

voltage deviations at load buses are minimised through dispatch of all capacitors. The

OLTC is controlled in real-time to keep the substation secondary bus voltage close to
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the set-point that incorporates the voltage change caused by the capacitors. In these

previous approaches, the objectives specified for the substation control problem focus

only on the secondary bus at the substation. The rest of the buses are considered in35

the control schemes for capacitors.

In this paper, a two-stage approach to daily VVC is presented with the devices

controlled in a different manner. Firstly, a strategy to determine the FC dispatch

schedule is developed using reactive power set-points. Then, with the FC schedule as

input, coordination of the SC and OLTC is formulated as an optimisation problem.40

The advantage of this approach is that the voltage deviations can be reduced further

by adjusting the transformer tap ratio together with the capacitor on/off statuses.

The reason is that, unlike capacitors, transformers equipped with OLTCs usually have

a larger control range, smaller discrete steps and provide direct voltage adjustments.

Hence the model can produce an improved voltage profile. Voltage magnitudes at all45

load buses are primarily controlled at the substation with the statuses of FCs given as

input. Since the voltage constraint at each load bus is handled at the substation, the FC

control problem focuses solely on loss reduction. This strategy facilitates the adoption

of a technique relying only on reactive power-flows at the substation to determine

the control actions for FCs. The FC control problem minimises the reactive power-50

flow through the distribution feeders at the substation bus, while the OLTC and SC

problem minimises both the total loss and the voltage deviations at all distribution

network buses. The decomposition of the VVC problem reduces the dimension of the

optimisation model. Furthermore, the model can be applied to networks with extensive

remote control capability and those with limited capability i.e. coverage from the control55

centre to the substation but no coverage along medium voltage distribution lines.

The FC control problem is solved with a heuristic method while the OLTC and SC

control problem is solved by particle swarm optimisation (PSO) with consideration of

the discrete nature of the control variables. The performance of the proposed approach

is analysed in relation to various implementations of conventional VVC. Simulation60

results show that the proposed approach minimises both the voltage deviations and the
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total energy loss while conventional control considers one objective at a time depending

on specified settings.

The remainder of this paper is structured as follows. Section 2 gives a brief introduc-

tion of conventional VVC methods. Section 3 presents the proposed control strategy.65

A case study is described, followed by a discussion of results in Section 4. Section 5

concludes the study.

2. Conventional VVC

In traditional distribution networks, voltage regulation is realised through manual

or automatic adjustments of transformer taps so that the voltage lies between the given

upper and lower bounds. Automatic voltage regulation is achieved by using transform-

ers equipped with OLTCs at distribution substations. Generally, automatic voltage

regulation (AVR) settings comprise a voltage set-point and a deadband. The voltage

set-point is the desired voltage at the bus controlled by the OLTC. The deadband is the

allowed margin within which no tap changes are initiated; the controller sends out tap

changes whenever the voltage falls outside the deadband. The steady-state tap position

at time t is determined using [21]

ut
TAP =



























ut−1
TAP +∆ut

TAP, if Vset − V t > 0.5Vdb;

ut−1
TAP −∆ut

TAP, if Vset − V t < −0.5Vdb;

ut−1
TAP, otherwise;

where ∆ut
TAP is the number of tap movements required to bring the voltage V t into

the deadband, Vdb; Vset is the voltage set-point. The deadband setting is, in general,70

selected in a way that avoids unnecessary operations[22]. The voltage set-point decision

considers feeder losses and voltage regulation limits [23].

Capacitor control aims to reduce reactive power-flow through the substation trans-

former or the distribution feeder. In this way, the total loss is minimised. The use

of capacitors also has the effect of raising voltage in addition to providing reactive75
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Fig. 1. Conceptual model of the proposed feeder var control and optimal substation control.

power compensation. In this paper, a combination of automatic voltage regulation us-

ing OLTCs and time-based capacitor control is implemented. This method requires no

remote control facilities because the OLTC and capacitors are controlled locally. It is

henceforth referred to as conventional control.

3. Feeder Var Control and Optimal Substation Control (FVC-OSC)80

The proposed method minimises the total loss and voltage deviations in distribution

systems. The conceptual model of the method is illustrated in Fig. 1. The solution

process comprises two stages. Firstly the FC schedules are determined. Then the SC

and OLTC are coordinated optimally to complete the dispatch schedules. The FC on/off

statuses are derived from reactive power variations on the feeder at the substation and85

supplied together with the forecasted active power and reactive power profiles of the

loads to the SC and OLTC control model. Then, an optimisation algorithm is applied

in which the switching sequences of the SC and OLTC are obtained.

The index t denotes a time interval, whose length is ∆t = 1 h; [t∆t, (t + 1)∆t)

denotes a single interval and N specifies the total number of intervals in the scheduling90

period, which in this study is 24. The time interval and bus indices satisfy 1 ≤ t ≤ N ,

1 ≤ d ≤ D and 1 ≤ j ≤ D. D is the total number of buses in a given network. The

transformer tap position (adjusted by an OLTC) is represented by the integer variable

ut
TAP ∈ [Tmin,Tmax] and related to the tap ratio atr by atr = 1−ustu

t
TAP. ust is the size of

a single tap increment/decrement step. Capacitors are realised as shunt elements with95
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on/off operations modeled as binary variables. ut
CAP ∈ [0, 1] denotes the SC control

action while the FC control actions are represented by ut
C,d ∈ [0, 1].

3.1. Feeder Var Control (FVC)

A heuristic scheduling technique based on the substation feeder reactive power pro-

files is proposed for FVC. The aim of this method is to minimise reactive power-flow100

through the transformer without SC and OLTC control. Furthermore, the total number

of operations for the FCs during the scheduling period must not exceed the permissible

limit.

The objective of FVC is to minimise feeder reactive power-flow as described below:

N
∑

t=1

∣

∣Qt
sub,n

∣

∣ , (1)

subject to

(1) power-flow balance at switching interval t:105

P t
G,d − P t

L,d = V t
d

D
∑

j=1

V t
j [G

0
dj cos (δ

t
d − δtj)

+ B0
dj sin (δ

t
d − δtj)], (2)

Qt
G,d −Qt

L,d = V t
d

D
∑

j=1

V t
j [G

0
dj sin (δ

t
d − δtj)

−B0
dj cos (δ

t
d − δtj)], (3)

(2) FC switching effort:
N
∑

t=2

∣

∣ut
C,d − ut−1

C,d

∣

∣ ≤ Cmax; (4)

where Qt
sub,n is the reactive power through the distribution feeder n at the substation.

P t
G,d denotes the generated active power and Qt

G,d, the generated reactive power, at

bus d. P t
L,d and Qt

L,d stand for the active power and reactive power consumed at the110
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dth bus respectively. V t
d and δtd are the voltage magnitude and angle at bus d; at bus

j, the voltage magnitude and angle are denoted by V t
j and δtj . G0

dj and B0
dj are the

conductance and susceptance values of the admittance element y0dj in the admittance

matrix, respectively, when the status of the SC is off and the transformer tap position is

at nominal tap. Cmax indicates the allowable maximum number of daily FC switching115

operations.

3.2. Calculation of the FC Switching Sequence

The FCs are switched on/off if the resulting status decreases the reactive power

flowing through the distribution feeders. The control actions of the FCs at interval t

are calculated using

ut
C,d =



























1, if Qt
seg,n ≥ z1Q

F
d ;

0, if Qt
seg,n ≤ z2Q

F
d ;

ut−1
C,d , if z2Q

F
d < Qt

seg,n < z1Q
F
d ;

(5)

where Qt
seg,n is the reactive power-flow at the head of the lateral or segment where the

FC is connected. For a feeder that does not have laterals, Qt
seg,n = Qt

sub,n. Q
F
d is reactive

power rating of the capacitor. z1 and z2 are switching parameters selected based on120

the feeder reactive power-flows at the substation. z2 is smaller than z1 and the two

parameters satisfy 0 < z1 ≤ 1 and −1 ≤ z2 < 0.

The operation sequence of FCs are assigned locational priority and their operation

is determined sequentially using (5). The switch status of the capacitor furthest from

the substation, is determined first whereas that of the nearest capacitor is last in line.125

The resulting capacitor statuses affect bus voltage magnitudes, but it is not necessary

to consider voltage regulation in (1)–(5) because the bus voltages are kept within the

upper and lower limits by the SC and OLTC control described in Section 3.3.
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3.3. Optimal Substation Control (OSC)

The total energy loss and the secondary side voltage deviations minimisation prob-

lem can be formulated as:

J1(u, xu, xu, x) + J2(u, xu, xu, x) = λ1

N
∑

t=1

(

(VR − V t
1 )

2 +

D
∑

d=2

(V T
d − V t

d )
2

)

+ λ2

N
∑

t=1

P t
loss, (6)

subject to130

(1) bus voltage limits:

Vmin ≤ V t
d ≤ Vmax, (7)

(2) power-flow balance at interval t: (2) and (3) apply except that G0
dj and B0

dj are

replaced with Gi
dj and Bi

dj ,

(3) OLTC control movements:

N
∑

t=2

∣

∣ut
TAP − ut−1

TAP

∣

∣ ≤ umax
T , (8)

(4) and SC switching operations, which are taken into account using the same expres-

sion as (4);

where the first term in (6) represents the voltage deviation index (VDI) and the second135

term the total energy loss; λ1 and λ2 are positive tuning weights; V
t
1 is voltage magnitude

at the substation secondary bus and VR denotes the reference voltage at the substation

secondary bus which satisfies V min
R ≤ VR ≤ V max

R ; V min
R and V max

R are the lower and

upper reference voltage limits respectively; V t
d is the voltage magnitude at bus d; VT

d is

the target voltage at bus d; V min and V max are the permissible minimum and maximum140

voltages respectively; umax
T is the allowed maximum number of tap-changing operations

in a day.

Some tap positions within the allowable range do not produce feasible bus voltages

under time-varying loading conditions. Therefore, the search space is reduced by further

narrowing the tap range from [Tmin,Tmax] to probable tap positions that lead to the
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lowest voltage deviations. Using the expression derived in[8], the ideal tap ratio is first

approximated as

atid =







|ZT|
2

∣

∣V t
p

∣

∣

2
|V t

s |
2





(

Qt
L +

|V t
s |

2

|ZT|

)2

+ P t
L

2











1

2

, (9)

then the tap position range is modified as follows:

atid − 1

ust
− ua ≤ ut

TAP ≤
atid − 1

ust
+ ua, (10)

where uuu represents a vector containing control variables that consist of time-varying tap

positions and capacitor switching statuses; xxx is a vector containing state variables; V t
p

is the substation primary bus voltage whereas V t
s represents the substation secondary145

bus voltage; ZT is the impedance of the transformer; P t
L and Qt

L denote the active and

reactive power demand at the substation secondary bus respectively; ua is a positive

integer.

3.4. OSC Solution Algorithm

The solution algorithm presented in this section solves the problem described in (6)–

(10). Since the standard PSO addresses continuous problems, it is modified in the pro-

posed approach to cater for discrete variables. The resulting algorithm is similar to that

presented in [24]. The particle p position vector is represented by xxxp =
[

x1
p, x

2
p, ..., x

U
p

]T
,

where U is the particle dimension. The velocity vector is vvvp =
[

v1p, v
2
p, ..., v

U
p

]T
. The

position and velocity for particle p in the next iteration, k + 1, are updated as follows

xxxk+1
p = xxxk

p + vvvk+1
p , (11)

vvvk+1
p = round(wvvvkp + c1rand1(xxx

k
1p − xxxk

p) + c2rand2(xxx
k
1g − xxxk

p)), (12)

where round() indicates that the result is rounded off to the nearest discrete value;

xxxk
1p (pbest) is the best position of particle p, and xxxk

1g (gbest) is the best position of the

whole particle group; c1 and c2 are acceleration constants which satisfy c1 + c2 = 4;
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rand1 and rand2 are random numbers between 0 and 1. The velocity vvvkp is restricted to

fall within the range
[

vmin, vmax
]

. When vup < vmin, the velocity is reset to vup = vmin in

all iterations. For cases where vup > vmax, the velocity is redefined to vup = vmax. As is

the case with velocities, the particle position xxxk
p is bounded by xmin and xmax. To deal

with the constraints (7)-(4), the penalty approach described in (13) is implemented

J1(u, xu, xu, x) + J2(u, xu, xu, x) + p
M
∑

u=1

max(0, hu), (13)

where p is the penalty coefficient. J1 and J2 are defined in 6. hu is an expression150

representing each of the constraints. M is the total number of constraints. The value

of the penalty term in (13) rises as the search moves into infeasible regions and vice

versa.

The following PSO parameter settings are employed: particle population size of 100;

acceleration constants are set as c1 = c2 = 2; the inertia term, w = 0.5 + 1/2(ln k + 1),155

where k is the iteration count. vmax is set at about 25% of the variable range; vmin =

−vmax.

3.5. FVC-OSC Flowchart

FVC-OSC is based on a low-complexity approach to VVC. Consider a system with

four FCs, one SC and one OLTC for a scheduling period of 24 h. A heuristic technique is160

used to schedule FCs, leaving the dispatch schedule of the SC and OLTC to be solved

optimally. The OSC variables are the SC on/off statuses, transformer tap positions

and the reference voltage at the substation secondary bus. Thus, the total number of

variables is (1 + 1 × 24 + 1 × 24) = 49. For a unified model, the dispatch schedule

of the OLTC and all capacitors are calculated simultaneously. One such example is165

the dynamic programming approach developed in [11], which increases the number of

variables to (5× 24 + 1× 24) = 144.

Furthermore, the proposed model is suitable for networks with extensive control

capability and those with remote control at the substation but not downstream. The

latter may even be a case of intentional selective upgrading of existing infrastructure.170
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This is preferred when the transition to a fully automated network is not possible

because of the prohibitive cost of upgrades [25], [26]. Since FVC is an independent

form of control, it can be implemented in a similar manner to conventional time control.

Implementation of the FVC-OSC model in a distribution network incapable of remote

FVC would require a local controller, which would be loaded with hourly control actions.175

The procedure that is followed to solve the VVC problem is summarised below and

illustrated in Fig. 2.

(1) Solve the power-flow problem for all t = 1, 2, 3, ..., N and determine a set of control

actions ut
C,d according to (1)–(5) over the 24-h scheduling period.

(2) Determine the applicable transformer tap range for each interval t.180

(3) Initialise all variables (ut
CAP, u

t
TAP and VR) for all t = 1, 2, 3, ..., N .

(4) Solve the power-flow equations to determine the bus voltages and power losses for a

given population of particles. At the end of the power-flow computation for interval

t, the vector [V t
1 , ..., V

t
d ]

T and P t
loss are stored until the end of the scheduling period

and then transferred to the next step where the optimisation model is evaluated.185

(5) Apply discrete PSO.

(6) Stop the algorithm if it has reached the predefined maximum number of iterations.

Otherwise return to step 4.

4. Case Study and Results Discussion

The distribution network depicted in Fig. 3 is used for performance evaluation of190

conventional control, the optimum settings approach (OSA) and FVC-OSC. Full details

of the network can be found in [27], [28]. The demand at each load bus peaks at 1.4 MVA

and has the P t
L,d andQt

L,d profiles shown in Fig. 4 for which ∆t = 1 h. The minimum and

maximum allowable voltages are 0.95 pu and 1.05 pu respectively. The target voltage

is V T
d = 1 pu for all load buses. The transformer provides ±10% regulation with 8195

tap steps above and below nominal tap; Tmin = −8 and Tmax = 8. Each step gives an

increment/decrement of±0.0125 pu. The maximum allowable number of tap operations
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Fig. 3. Typical distribution network with an OLTC and capacitors (adapted from [27]).
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per day is 30. All capacitors can only be operated 8 times a day at the most. Two cases

of conventional control, CC-A and CC-B, which refer to AVR combined with time-based

capacitor control at different set-points (Vset) are investigated for comparison purposes.200

The settings used for conventional control are shown in Table 1. For both CC-A and

CC-B, the SC is switched on, at 07:00, as the load rises towards peak demand and

switched off, at 16:00, as the load approaches minimum demand.

OSA introduces some improvement to conventional control. As described in [27],

these settings are derived from heuristic rules which aim to coordinate the OLTC, SC205

and FCs to minimise losses and satisfy the bus voltage constraint. In brief, losses in

a traditional distribution network without distributed generation can be minimised by

making Vset high but below Vmax and selecting Vdb in a way that keeps the actual

voltage close to Vset but does not cause too many tap movements. The SC set-points,

Qon and Qoff, are based on the reactive power-flow through the substation transformer.210

The FC set-points denoted by Von and Voff depend on the bus voltage thresholds at the

point of connection. Here, Vdb is selected such that the number of tap movements does

not exceed umax
T . The same settings as in [27] are used in this case study as shown in

Table 2.

Regarding the proposed FVC-OSC approach, z1 = 0.5 and z2 = −z1 are used for215

FC control. The power-flow solutions are computed using Newton’s method provided

in [29]. In terms of computational times, FVC-OSC takes 13 minutes to execute, in-

cluding 100 iterations of PSO on a 3.3 GHz Intel i5-4590 (8 GB RAM) computer. The

time requirement increases to 26 minutes, to run the algorithm with 200 PSO iterations

13



Table 1

Conventional Method Settings

OLTC Capacitor

Scenario Vset (pu) Vdb (pu) ton toff

CC-A 1.00 0.03 07:00 16:00

CC-B 1.02 0.03 07:00 16:00

Table 2

Optimum Settings

OLTC SC FCs
Vset

(pu)

Vdb

(pu)

Qon

(Mvar)

Qoff

(Mvar)

Von

(pu)

Voff

(pu)

1.035 0.03 -2 2 0.99 1.05

and improve the best solution by 1.02%. Based on function evaluations of up to 1000220

iterations, further increases in iterations do not lead to an improved best solution.

4.1. Effect of Adaptive Reference Voltage and Tap Range

Two cases consisting of 30 trials each are studied. The maximum number of iter-

ations per trial is 200. In the first case, the reference voltage VR is fixed at 1 pu and

the tap range is bounded by the highest and lowest possible transformer tap positions,225

Tmin and Tmax respectively. In the second case, the tap range and reference voltage are

adjusted as defined in Section 3.3. Numerical results of the fitness function given by

(13) are compared for both cases.

The best solution obtained with a fixed reference voltage and the full tap range,

is a minimum of 2.3853. As mentioned previously, not all tap positions yield bus230

voltages between Vmin and Vmax. As a result, the search space explored has a number

of infeasible solutions. By comparison, the tap range and reference voltage adjustments

improve the quality of solutions, with the best solution dropping to 2.3612. Similarly,

the mean, among others is lowered to 2.4056 from 2.4225. A graphical description of

the adapted tap range can be seen in Fig. 5. The solutions are improved in this case235
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Table 3

Statistical results of FVC-OSC

FVC-OSC (Fixed) FVC-OSC (Adaptive)

Worst 2.5407 2.4633

Best 2.3853 2.3612

Mean 2.4225 2.4056

Standard Deviation 0.0367 0.0249
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0
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o
s
it
io

n

Time of day (h)

Fig. 5. Adaptive tap range.

because the algorithm explores a narrower search path defined by fewer tap positions.

In other words, the algorithm is directed towards more feasible solutions within the

preset maximum number of iterations. Details of the statistical results reached by the

two cases are shown in Table 3.

4.2. FVC-OSC and Conventional Control Comparison240

Table 4 shows the summarised results for the base case, conventional control and

FVC-OSC. The purpose of the base case is to illustrate a system without VVC, in

which the transformer tap position is fixed at nominal tap and the SC status is off.

For conventional control, the voltage is kept within the specified deadband at bus 1 as

illustrated in Fig. 6. On the contrary, the voltages at other buses fluctuate with load.245

Hence the lower voltage limit is violated at bus 9 and at bus 10 during the day for CC-

A. The voltage profiles for bus 9 are also shown in Fig. 6. The voltage remains within

the allowable range throughout the day and the total daily loss is reduced in CC-B.

This is due to the higher voltage set-point in this scenario. The total VDI decreases

by 67.46% and the total loss by 1.07% from 0.1340 and 14.3422 MWh produced by250
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CC-A respectively. It should be noted that raising the voltage set-point does not

always improve the solution. For example, changing the set-point from 1.02 pu to

1.03 pu lowers the total loss to 14.0946 MWh but increases the VDI to 0.0628. In

FVC-OSC, the FCs remain switched on because the reactive power-flow at the either of

the substation feeders does not exceed −0.5QF
d at any instant during the 24-h period.255

The resulting bus voltages are kept even closer to the desired values while there is

also an improvement in the total loss reduction recorded in CC-B. Compared to CC-B,

the VDI and the total loss are reduced by additional 13.99% and 1.47% respectively.

FVC-OSC results correspond to a calculated reference voltage of 1.02 pu. For high

load (07:00-18:00), FVC-OSC raises the voltage higher than in conventional control.260

The rest of the time, the voltage is maintained closer to CC-A or CC-B. This adaptive

ability allows FVC-OSC to maintain a steadier voltage profile downstream in both high

and light loading conditions. Bus voltages along the network are displayed in Fig. 7.

These voltages are produced by conventional control and FVC-OSC when the load

demand is at its maximum at 11:00. It can be seen that the voltage is closer to 1 pu265

and more uniform for FVC-OSC than for CC-A and CC-B. The tap movements and

capacitor control actions resulting from the cases under study are displayed in Fig. 8.

In all scenarios, the number of device operations remained below the specified limits

although FVC-OSC resulted in the highest of all four. It can be observed that in FVC-

OSC, the OLTC raises the transformer tap position higher than in CC-A and CC-B,270

most notably at peak load. As expected, FVC-OSC produces the highest loss reduction

during this period.

In the presence of load forecast errors, specifically between -1% and 18%, FVC-OSC

still keeps voltages within 0.95 and 1.05 pu. VDI is decreased by at least 18% and the

loss is reduced by at least 1% from the conventional control case. Beyond this particular275

error range voltage limits are violated. For FVC-OSC to be able to maintain satisfactory

performance under a larger error range, the model can be implemented with a feedback

control technique. In this case a model predictive controller is a suitable candidate to

act on load changes online in a manner akin to [Zhang, Xia].
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Fig. 6. Bus 1 (top) and bus 9 (bottom) voltage profiles.

Fig. 7. Bus voltages produced by the different VVC approaches for maximum loading at 11:00.
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Fig. 8. Simulated switching sequences of the substation devices over 24 hours.
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Table 4

Summary of results for the system under study

Number of

Operations

Scenario VDI

Total

Loss

(MWh)

OLTC SC

Base Case 1.2778 15.2520 - -

CC-A 0.1340 14.3422 14 2

CC-B 0.0436 14.1888 14 2

FVC-OSC 0.0375 13.9798 21 5

4.3. Effect of Limiting OLTC and Capacitor Operations280

As previously mentioned, the total number of operations produced by FVC-OSC is

higher than that of conventional control. It is desirable to determine how the optimal

solution is affected by the number of capacitor and OLTC operations. The relationship

between the maximum allowed number of operations, the VDI and the total daily loss

is shown in Table 5 and Table 6. For OLTC switching limits over 25, the number of285

feasible solutions increases together with the OLTC switching operations but, the best

solution is not improved. The same pattern is displayed for capacitor control action

limits over 6. For OLTC movements under 20 and capacitor control actions below 6,

the VDI and the total loss increase as the number of operations drops. It is difficult

for FVC-OSC to provide feasible solutions as the switching requirements become more290

stringent. In this case study, the algorithm cannot provide solutions which satisfy (8)

and (4) when the limits on OLTC movements and capacitor operations are lower than

nine and two respectively.

4.4. FVC-OSC and OSA Comparison

In this scenario, two more FCs are connected to bus 4 and bus 9, resulting in four295

1.4 Mvar FCs in the network. The voltage deviation trends for the optimum settings

approach and FVC-OSC are shown in Fig. 9. The VDI is 0.0296 for FVC-OSC and
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Table 5

Effect of Limiting OLTC Operations

Actual Number of

Operations

Operations

Limit
VDI

Total

Loss

(MWh)

OLTC SC

30 0.0485 13.9927 29 7

25 0.0375 13.9798 21 5

20 0.0385 14.116 18 4

15 0.0367 14.1402 14 4

10 0.0469 14.1558 9 4

Table 6

Effect of Limiting Capacitor Switching Operations

Actual Number of

Operations

Operations

Limit
VDI

Total

Loss

(MWh)

OLTC SC

10 0.0378 14.034 29 9

8 0.0485 13.9927 29 7

6 0.0375 13.9798 21 5

4 0.0389 14.0773 26 4

2 0.0405 14.1038 20 2
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Fig. 9. 24-h voltage deviation (top) and loss (bottom) trends of FVC-OSC and the optimum

settings method.

0.163 for the optimum settings approach. Both methods keep the voltage within upper

and lower limits. The optimum settings approach maintains bus 1 voltage close to a

predetermined set-point which, in this case, is largely in favour of loss reduction. Hence300

in this case study, the VDI is low for high loading but high for low loading. In contrast,

FVC-OSC allows bus 1 voltage variations that are suitable for low losses and voltage

deviations considering all the distribution buses.

The impact of the two different approaches on losses is also illustrated in Fig. 9.

FVC-OSC produces losses equal to 13.7749 MWh for the whole system and 2.4595305

MWh for the distribution network. On the other hand, the optimum settings approach

gives values of 13.9183 MWh for the whole system and 2.6357 MWh for the distribution

network. The lower loss magnitudes show the effectiveness of controlling the FCs based

on reactive power set-points and incorporating the resulting switching sequences into

the OSC model.310

4.5. 69-bus System

5. Conclusion

FVC-OSC has been presented with the purpose of dealing with daily VVC in a coor-

dinated but simplified manner. The FCs are controlled according to reactive power-flows
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through distribution feeders while the OLTC and SC control problem is formulated with315

respect to operational constraints and then solved with discrete particle swarm opti-

misation. It is demonstrated that FVC-OSC determines the most suitable substation

secondary bus reference voltage and dispatch sequences to minimise daily voltage de-

viations and total loss over 24 hours. This is in comparison with existing variants of

conventional VVC. Results also show that FVC-OSC maintains feasibility even under320

tight restrictions on the allowable maximum number of control movements.
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