Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Static mode microfluidic cantilevers for detection of waterborne pathogens

Bridle, Helen and Wang, Wenxing and Gavriilidou, Despoina and Amalou, Farid and Hand, Duncan P. and Shu, Wenmiao (2016) Static mode microfluidic cantilevers for detection of waterborne pathogens. Sensors and Actuators A: Physical, 247. pp. 144-149. ISSN 0924-4247

[img] Text (Bridle-etal-SAAP-2016-Static-mode-microfluidic-cantilevers-for-detection-of-waterborne)
Bridle_etal_SAAP_2016_Static_mode_microfluidic_cantilevers_for_detection_of_waterborne.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 6 May 2017.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (936kB) | Request a copy from the Strathclyde author

Abstract

This paper reports on the first demonstration of polymeric microfluidic cantilever sensors. Microcantilever sensors, magnetic beads, and microfluidic technology have been combined to create a polymer based biosensor. Using cheap materials like polyimide, a simple fabrication method has been developed to produce cantilevers with an embedded microfluidic channel. The advantage of this approach is that the addition of a microfluidic channel enables the analysis of smaller volumes and increases the capture efficiency in applications detecting rare analytes. As a proof of principle the system has been applied for the detection of the waterborne protozoan parasite Cryptosporidium, achieving sensitivity comparable to QCM, whereas a previous set-up without the microfluidic channel was unable to detect the parasite.