Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A model-based analysis method for evaluating the grid impact of EV and high harmonic content sources

Melone, Joseph and Zafar, Jawwad and Coffele, Federico and Dysko, Adam and Burt, Graeme M. (2015) A model-based analysis method for evaluating the grid impact of EV and high harmonic content sources. International Journal of Distributed Energy Resources, 11 (4). 99 - 110. ISSN 1614-7138

[img]
Preview
Text (Melone-etal-IJDER-2015-A-model-based-analysis-method-for-evaluating-the-grid-impact-of-EV)
Melone_etal_IJDER_2015_A_model_based_analysis_method_for_evaluating_the_grid_impact_of_EV.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

The impact on the distribution grid when Electric Vehicles are connected is an im-portant technical question in the development of new smart grids. This paper looks in detail at the predictive capability of a model, calculating harmonic voltage and current levels, in the situation where an electric vehicle is being charged by an in-ductive charging plate which acts as a substantial source of harmonic distortion. The method described in this paper models distortion at the LV side of the distribution grid by reconstructing the HV harmonic distortion levels seen at a typical LV sub-station. Additional LV connected harmonic-rich current sources can then be added, allowing a quantitative analysis of the impact of such sources on the distribution grid in terms of measurable harmonics magnitude and phase angle with respect to the fundamental.