Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A model-based analysis method for evaluating the grid impact of EV and high harmonic content sources

Melone, Joseph and Zafar, Jawwad and Coffele, Federico and Dysko, Adam and Burt, Graeme M. (2015) A model-based analysis method for evaluating the grid impact of EV and high harmonic content sources. International Journal of Distributed Energy Resources, 11 (4). 99 - 110. ISSN 1614-7138

[img]
Preview
Text (Melone-etal-IJDER-2015-A-model-based-analysis-method-for-evaluating-the-grid-impact-of-EV)
Melone_etal_IJDER_2015_A_model_based_analysis_method_for_evaluating_the_grid_impact_of_EV.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

The impact on the distribution grid when Electric Vehicles are connected is an im-portant technical question in the development of new smart grids. This paper looks in detail at the predictive capability of a model, calculating harmonic voltage and current levels, in the situation where an electric vehicle is being charged by an in-ductive charging plate which acts as a substantial source of harmonic distortion. The method described in this paper models distortion at the LV side of the distribution grid by reconstructing the HV harmonic distortion levels seen at a typical LV sub-station. Additional LV connected harmonic-rich current sources can then be added, allowing a quantitative analysis of the impact of such sources on the distribution grid in terms of measurable harmonics magnitude and phase angle with respect to the fundamental.