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ABSTRACT: The favored pathway for disposal of higher
activity radioactive wastes is via deep geological disposal. Many
geological disposal facility designs include cement in their
engineering design. Over the long term, interaction of
groundwater with the cement and waste will form a plume
of a hyperalkaline leachate (pH 10−13), and the behavior of
radionuclides needs to be constrained under these extreme
conditions to minimize the environmental hazard from the
wastes. For uranium, a key component of many radioactive
wastes, thermodynamic modeling predicts that, at high pH,
U(VI) solubility will be very low (nM or lower) and controlled
by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially
enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability
of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied
conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques
(small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a
synthetic cement leachate (pH > 13) containing 4.2−252 μM U(VI). The results show that in cement leachates with 42 μM
U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5−1.8 nm nanoparticles
with a proportion forming 20−60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the
colloidal nanoparticles had a clarkeite (sodium−uranate)-type crystallographic structure. The presented results have clear and
hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with
the geological disposal of nuclear waste.

■ INTRODUCTION

Many countries including the U.K., USA, and former Soviet
Union have significant legacies of radioactive waste materials
due to their long history of nuclear power generation and
military activities. Typically, the long-term strategy for nuclear
waste management of higher activity materials is containment
in a geological disposal facility (GDF) within the deep
subsurface.1 Currently, in many nations, GDF designs are at a
generic stage and will be developed as site selection proceeds.
Essentially, the design of a GDF is focused on limiting the
mobility and migration of radionuclides.2 Typically, the
mobility of radionuclides, and particularly uranium, in the
subsurface is governed by solubility and adsorption to
geological materials.3 In addition, colloidal transport has the
potential to significantly enhance radionuclide migration in
geodisposal relevant conditions.3,4 However, it is not known

whether stable U(VI) colloids form under geochemical
conditions relevant to radioactive waste disposal in GDFs.
Most scenarios for intermediate level waste (ILW) disposal

in a GDF utilize cementitious materials. For example, ILW is
typically grouted with Portland cement and emplaced in steel
drums, and engineering of any subsurface disposal facility will
require use of structural cement.5,6 In addition, some GDF
designs are likely to utilize cementitious backfill.2,5,7,8 Post
closure, groundwater will resaturate the GDF and interact with
the cementitious material forming hyperalkaline leachate (pH
10−13) with elevated concentrations of K, Na, and Ca.9

Specifically, during the initial stages of the evolution of a GDF,

Received: July 18, 2014
Revised: October 4, 2014
Published: October 23, 2014

Article

pubs.acs.org/Langmuir

© 2014 American Chemical Society 14396 dx.doi.org/10.1021/la502832j | Langmuir 2014, 30, 14396−14405

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/Langmuir
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


the pH of the hyperalkaline leachate may reach values in excess
of 13 due to dissolution of sodium and potassium hydroxide
phases present in the cementitious materials used.9 During
operation, the GDF will be open to the atmosphere and hence
will be aerobic. Chemically reducing conditions are expected to
dominate post closure as iron corrosion will consume any
oxidants. Typically, within ILW, uranium will be the most
significant radionuclide by mass.5 Furthermore, the ILW will
contain uranium in both oxidation states, i.e., U(VI) and U(IV).
However, it is noteworthy that under alkaline and slightly
reducing conditions U(VI) is expected to be relatively stable
and may exist within a GDF for a significant period post
closure.10

The benefit of using cementitious materials in the design of a
GDF is that U(VI) is expected to exhibit low solubility in the
resulting hyperalkaline environment.11 At the pH values of
cement leachates (pH 10−13), aqueous U(VI) concentration
in equilibrium with, i.e., alkali/alkaline-earth uranates (e.g.,
Na(UO2)O(OH)·(H2O)0−1 and CaUO4) will be very low
(∼10−9 M).11,12 Furthermore, U(VI) adsorbs strongly to the
surfaces of many solid phases (e.g., iron oxides,13−15

silicates,14,16 and cement related phases17,18) which will be
ubiquitous in the GDF. These factors are predicted to
significantly reduce the concentration of aqueous U(VI) in a
cementitious GDF. Furthermore, even though the aqueous
concentration of carbonate is expected to be low in the deep
subsurface, it is noteworthy that the presence of carbonate
could significantly enhance U(VI) mobility through the
formation of soluble uranium(VI)−carbonate and calcium−
uranium(VI)−carbonate complexes.12−14,19

Significantly, U(VI) mobility could also be enhanced by
colloids formed within or transported through the GDF.3,20

Depending on the physical and chemical state of these colloidal
nanoparticles (e.g., surface charge) and the prevailing geo-
chemical conditions, colloids could facilitate the transport of
U(VI) into the geosphere.3,4 Previous studies have identified
cement and sediment derived colloidal particles3,20 with
complexed radionuclides3 and intrinsic radionuclide colloids
(e.g., ThO2

4 and Pu(OH)4
21) as potentially important transport

vectors.3,4 Recently, complexation of uranium and plutonium to
iron oxides has been implicated in their migration in
groundwater.22 Furthermore, uranates, among other U(VI)
colloids, have been identified as a potential transport vector,23

and plutonium(IV) colloidal transport has been inferred at the
Nevada Test Site, Nye County, NV, USA.24,25

Despite the widely recognized relevance of colloidal
transport in radioactive waste disposal and the potential
significance of U(VI) in waste disposal, few studies have
focused on the formation of colloidal U(VI) nanoparticles. As a
result, the aim of this study was to explore the potential for
colloidal U(VI) nanoparticle formation in a hyperalkaline
synthetic cement leachate (pH > 13) representative of the early
stages of the evolution of a GDF. Additionally, where colloidal
nanoparticles were found to be present, their characteristics and
stability were then determined by conventional chemical and
microscopy techniques combined with synchrotron based in
situ small-angle X-ray scattering (SAXS) and X-ray adsorption
spectroscopy (XAS).

■ METHODS
To investigate the speciation of U(VI) in conditions relevant to
cementitious GDFs, a synthetic cement leachate (pH ∼ 13.1) was
prepared by dissolving KOH (0.19 mol), NaOH (0.19 mol), and

Ca(OH)2 (0.27 mmol) (all AnalaR grade) in 2 L of degassed,
deionized water.9,17,18 Prior to use, this was filtered through a 0.22 μm
polyvinylidene fluoride (PVDF) syringe filter in a CO2 controlled (<1
ppm of CO2) anaerobic chamber where all subsequent manipulations
were performed. A 2.52 mM U(VI)O2(NO3)2 stock solution (pH ∼
2.3) was used to spike the cement leachate to 4.2, 42, and 252 μM
U(VI), after which the pH of 13.1 was confirmed. A time point series
of samples were then taken up to 32 months. At each time point,
separate samples were filtered using 0.22 μm (PVDF), 0.10 μm
(PVDF), and 0.02 μm (Anotop) syringe filters, and one sample was
unfiltered and undisturbed. The resulting samples were acidified to 2%
HNO3 and analyzed for total U using ICP-MS (Agilent 7500cx).

PHREEQC26 calculations were performed to determine the
equilibrium concentrations of U(VI) in the synthetic cement leachate
when a single U(VI) phase precipitated. These phases included the
minerals clarkeite (Na(UO2)O(OH)·(H2O)0−1), becquerelite (Ca-
(UO2)6O4(OH)6·(H2O)8), compreignacite (K2(UO2)6O4(OH)6·
(H2O)7), and several Ca/Na uranate phases. The PHREEQC
calculations were performed using the SIT (specific ionic theory)
database, which includes thermodynamic information on clarkeite,
becquerelite, and compreignacite from Gorman-Lewis et al.12 and
sodium and calcium uranates from O’Hare et al.27 The thermodynamic
equilibrium constants of uranyl hydroxide complexes as determined by
Zanonato et al.28 were also included.

Small Angle X-ray Scattering. SAXS was used to characterize
suspended/colloidal particles in the 42 μM U(VI) experiments, as
described earlier, using beamline I22 at Diamond Light Source. All
analyses were performed using a monochromatic X-ray beam at 12
keV and a 4 or 10 m camera length. Scattering patterns were collected
using a 2D PILATUS 2 M detector.29 Two sets of experiments were
performed. First, samples aged for 1 week, 20 months, and 32 months
were characterized. Here, the samples were injected into a quartz
capillary in line with the X-ray beam and SAXS patterns were
collected. Second, in situ time-resolved SAXS analyses were performed
to study the formation of colloidal U(VI) nanoparticles. These
experiments were performed at the I22 experimental hutch by spiking
the synthetic cement leachate to a final concentration of 42 μM U(VI).
The solution was then stirred for ∼15 s, injected into a quartz capillary
in-line with the X-ray beam, and sealed. SAXS measurements were
started concurrently to the U(VI) spike. Typically, the first full
scattering frame was acquired at ∼2 min after the injection of the
U(VI) spike. Scattering patterns were collected for up to 7 h at a 1−10
s/frame collection rate.

SAXS Data Analyses. The scattering patterns from the aged
samples, collected using the 4 and 10 m camera lengths, were
combined to form a single scattering pattern with a large scattering
vector (q) range. All SAXS patterns were modeled using the Irena
macro for Igor Pro.30 Additionally, the SAXS patterns from the in situ
time-resolved experiments were analyzed to determine the invariant
(Q) and I(0),31 described in detail in the Supporting Information (SI).
In short, Q and I(0) are a function of the scattering volume and the
density of the scatterers and I(0)/Q is a function of the particle
volume (eq 1, Vp is the particle volume in Å3).31−33 Additionally,
separate Q and I(0), and thus I(0)/Q, can be estimated for particle
populations with different particle volumes in a dilute suspension34 to
track the evolution of different particle populations.

≈I
Q

V
(0)

p
(1)

Solid Characterization. At selected time points, suspended
particles were captured on either carbon coated (Agar Scientific) or
positively charged C-SMART PLUS (Dune Sciences) transmission
electron microscope (TEM) grids and the supernatant was removed
using isopropanol to minimize the effect of drying on the solids
formed during the experiments. TEM images were taken using a
Philips CM200 field emission electron gun transmission electron
microscope (FEG-TEM). Chemical composition of the solids was
analyzed using energy dispersive X-ray spectroscopy (EDX) with an
Oxford Instruments 80 mm X-Max SD detector running the AZTEC
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software. TEM images were analyzed using image processing software
ImageJ.35

X-ray absorption spectroscopy (XAS) analyses were performed at
beamline B18 at Diamond Light Source, at the U LIII-edge using a
Si(111) monochromator at liquid nitrogen temperature. Two samples
were analyzed; first, a solid sample from the 252 μM U(VI)
experiment was prepared by centrifuging at 2600g. The residue was
then analyzed in transmission mode. Second, a 1 mL solution aliquot
of the 42 μM U(VI) experiment aged for 1 month was analyzed in
fluorescence mode. XAS data analyses were performed using Athena
and Artemis from the Demeter software package using FEFF6.36

■ RESULTS AND DISCUSSION
During the 252 μM U(VI) experiments a yellow precipitate
formed and solution analyses showed that the U(VI)
concentration in all of the filtered samples decreased to 1.4
μM (Figure 1a) over 28 days. Conversely, the unfiltered (and
undisturbed) solution samples only showed a minor decrease in
the U(VI) concentration to ∼200 μM U(VI) (Figure 1a)
suggesting the presence of a colloidal U(VI) component with
particle size > 0.22 μm in the 252 μM U(VI) experiment.
Interestingly, the 42 and 4.2 μM U(VI) experiments did not
show any visible precipitation or removal of U(VI) from
solution during filtration up to 32 months (Figure 1b). This is
in contrast to the thermodynamic modeling using
PHREEQC,26 which showed the solutions were (highly)
supersaturated with respect to several calcium and sodium
uranate phases (Table 1). It is worth noting that the
introduction of carbonate (including Ca−UO2−CO3 com-
plexes19) due to the dissolution of calcite had no significant
effect on the equilibrium concentrations in Table 1. These
results indicated that, in the 42 and 4.2 μM systems, U(VI) was
either dissolved in a supersaturated metastable state or that
stable colloidal U(VI) nanoparticles (≤0.02 μm) were present.
Small Angle X-ray Scattering. SAXS patterns of the aged

solutions from the 42 μM U(VI) experiments are presented in

Figure 2a. The observed scattering intensity suggests that
colloidal U(VI) was present in the 42 μM U(VI) experiments.
The best fit to the SAXS patterns using the Irena fitting package
consisted of a two particle population model: Smaller/primary
particles (high q values) were modeled using a form factor for
spherical particles, and larger particles (low q values),
presumptively aggregates of the primary particles, were
modeled using the form factor for algebraic globules.37,38 In
all cases the scattering patterns were modeled as dilute systems
reflecting the (relatively) low concentration of U(VI). Fits to
the respective scattering patterns are shown in Figure 2a, and
the fit parameters are given in Table 2. Briefly, by 2.3 h, the
primary particles reached a mean diameter of 1.54 ± 0.05 nm
and 57 ± 12% of the scattering solids formed aggregates with a
mean diameter of 22.4 ± 2.8 nm (Table 2). Beyond 2.3 h, there
was little significant change in the particle populations over 32
months, with a primary particle diameter of 1.60−1.82 nm and
between 33−57% of the scattering solids within aggregates of
42.2−60.0 nm. The only significant change in the particles over
the observation period was an increase in the mean aggregate
diameter from 22.4 to 56.0 nm between 2.3 h and 1 week. The
results from the SAXS patterns were supported by TEM images
of 1 h and 1 month samples from parallel experiments, with
evidence for 1−2 nm primary particles which formed
aggregates to 20−60 nm in size (Figure 2b). The aggregate
morphology observed by TEM was consistent with the
algebraic globules form factor used in the SAXS modeling
approach. It should however be noted that air drying
nanoparticle suspensions for TEM analysis could alter
aggregate morphology;39 however, due to the consistency
between the SAXS and TEM analyses we are confident that the
TEM images are a representation of the in situ colloidal
nanoparticles. Overall, the SAXS analyses indicate that the
U(VI) in this system was present as colloidal U(VI)
nanoparticles and underwent very little change from 2.3 h up

Figure 1. Solution data from the 252 μM U(VI) experiment (a) and the 42 and 4.2 μM U(VI) experiments (b). The error bars on the data from the
42 μM U(VI) experiment are the standard deviation of triplicate experiments; the results from filtering the solutions through 0.1 and 0.22 μm filters
from the 42 and 4.2 μM U(VI) experiments showed no differences compared to the plotted results and are given in Figure 2 in the SI.

Table 1. PHREEQC26 Calculations on the Concentration of U(VI) in Equilibrium with Selected Phases in the Cement
Leachatea

U(VI) concn (μM) in equilibrium with solid phase

exp (μM U(VI)) measd U(VI) concn (μM) Compb CaUO4 CaU2O7
c Becqd clarkeitee

252 1.88 ± 0.02f 180 131 35.8 50.4 0.00935
42 44.7 ± 2.9 42.0 9.15 × 10−6 13.4 42.0 0.00926
4.2 4.27 ± 0.05 4.20 6.21 × 10−6 4.20 4.20 0.00925

aNote that when the concentrations calculated are identical to the input concentrations, these phases are below saturation in the corresponding
experiment. bCompreignacite: K2(UO2)6O4(OH)6·(H2O)7

cCalcium uranate trihydrate: CaU2O7·(H2O)3
dBecquerelite: Ca(UO2)6O4(OH)6·

(H2O)8
eClarkeite: Na(UO2)O(OH)·(H2O)0‑1

fThe printed values are the averages of all filtered samples and their standard deviation
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to 32 months. Interestingly, the 0.02 μm filtration samples from
the 42 μM U(VI) experiment showed no removal from solution
(Figure 1) even though TEM and SAXS analysis suggest the
presence of aggregates > 20 nm (Figure 2 and Table 2). This
suggests artifacts from filtration and/or facile disaggregation of
colloidal nanoparticles upon forced filtration through 20 nm
pores.
Time-resolved I(0) data from the in situ 42 μM U(VI)

experiments (4 and 10 m camera length) are shown in Figure
3a. The above background I(0) in the first scattering pattern
collected (at ∼2 min; Figure 3a) suggested particle formation
prior to ∼2 min. Between 2 min and 2.3 h, I(0) increased 10-

fold (Figure 3a, dashed vertical line). After this initial increase,
I(0) decreased slightly (Figure 3a) possibly due to aggregate
growth (Table 2).
Fitting (Irena) the SAXS patterns from the 42 μM U(VI)

experiments yielded time-resolved size information for the
aggregates, but due to the low intensity of the scattering
patterns at high q values, fitting of the primary particle model
was not achieved. However, it was possible to determine I(0)
and Q for each particle population. Figure 3b shows the I(0)/Q
(which relates to particle volume; eq 131−33) for the aggregates
and primary particles, and aggregate volume, calculated from
the size determined using Irena. The aggregate volume (Irena)
and I(0)/Q values as a function of time are consistent (Figure
3b), giving confidence that I(0)/Q reflects particle volume
trends in the 42 μM U(VI) experiment. The aggregate diameter
increased up to ∼22.4 nm (Figure 3b and Table 2) during the
first 1.5 h of the experiment (Figure 3b, vertical line) and then
remained constant. This initial growth of the aggregates was
presumably due to primary particle aggregation and/or
nucleation of particles on the aggregate surface. Between
∼1.5 and ∼2.3 h the aggregate size did not increase, while I(0)
increased about 3-fold (Figure 3). This indicates that
continuous formation of colloidal nanoparticles/aggregates
occurred after the aggregate size reached a maximum. The
I(0)/Q for the primary particles remained constant (Figure 3b),
indicating that the primary particles formed at ∼1.5 nm (Table
2) in diameter and did not change in size. Thus, the formation
mechanism of the primary particles was likely nucleation
dominated, with no significant particle growth occurring (e.g.,
ripening).40,41

The persistence of a significant fraction of unaggregated
primary particles (Table 2) could have been caused by the high
pH. The pH at the point of zero charge for several uranyl oxy-
hydroxides is 4−4.5.42 It is thus clear that U(VI) (oxyhydr)-
oxide nanoparticles would have a highly negative surface charge
at pH 13.1. Thus, electrostatic repulsion would minimize
(further) particle aggregation consistent with our observations
and potentially reduce the interaction of U(VI) with materials
present in a cementitious GDF system.

Solid Characterization. HR-TEM images of the colloidal
nanoparticles (1 day and 1 month) from the 42 μM U(VI)
experiment are shown in Figure 4b,d. The 1−2 nm particles
collected after 1 h (Figure 2b) lacked any resolvable lattice
fringes, suggesting an amorphous character. By contrast, the
nanoparticles from 1 day to 1 month had visible lattice fringes
(emphasized by circles, Figure 4b,d) which were spaced at 3.0−
3.3 Å. Reflecting on this, the primary particles in the 42 μM
U(VI) experiments initially formed as amorphous nano-
particles, potentially due to the aggregation of stable
prenucleation clusters akin to the observed dynamically ordered
liquid-like oxy-anion polymers (DOLLOP) observed during the

Figure 2. (a) Small angle X-ray scattering patterns from the 42 μM
U(VI) experiments (continuous black lines) including the fits (dashed
gray lines). The fit to the pattern collected from the 32 month sample
has also been divided between the scattering from the primary particles
and the aggregates (dotted gray lines). (b) TEM images of the
colloidal U(VI) nanoparticle 1 h and 1 month after spiking the cement
leachate with U(VI).

Table 2. Results of the Fits from the SAXS Patterns from the 42 μM U(VI) Experiments

primary particles aggregates fraction of aggregated particles

sample name mean diam (nm)a polydispersitya,b mean diam (nm)a polydispersitya,b [Vaggr/(Vaggr + Vprim)] × 100 (%)a,c

2.3 h 1.54 ± 0.05 0.20 ± 0.20 22.4 ± 2.8 1.62 ± 0.25 57 ± 12
1 week 1.60 ± 0.26 0.63 ± 0.11 56.0 ± 18.2 1.06 ± 0.23 33 ± 15
20 month 1.82 ± 0.22 0.48 ± 0.15 42.2 ± 11.6 1.48 ± 0.86 44 ± 16
32 month 1.75 ± 0.16 0.47 ± 0.11 60.0 ± 30.0 2.44 ± 0.17 57 ± 14

aThe errors were evaluated by calculating the range less 1.05 times the minimum χ2. bThe polydispersity is defined as the standard deviation of the
log-normal distribution of the particles. cVprim and Vaggr represent the calculated volumes for the primary particles and aggregates respectively.
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formation of amorphous calcium carbonate.43,44 Furthermore,
the amorphous uranium nanoparticles became nanocrystalline
during the course of a day. The crystallinity of the nanoparticles
is also emphasized by visible polycrystalline rings in the selected
area electron diffraction patterns (SAED, Figure 4c) collected
from the 1 day sample. Additionally, the EDX analyses of the
nanoparticles formed during the 42 μM U(VI) experiments
show that the particles consisted of U, Na, K, and Ca (Figure
5).
HR-TEM image from a 1 week sample collected from the 4.2

μM U(VI) experiment shows crystalline nanoparticles of 2−5

nm within a ∼10 nm aggregate (Figure 4a). This confirms that
U(VI) colloids also formed in the 4.2 μM U(VI) experiment
and were of a similar size and aggregation state to those formed
in the 42 μM U(VI) experiment. Furthermore, TEM
characterization shows that the crystallinity (lattice fringes
spaced at 3.0−3.3 Å, emphasized by circles in Figure 4a) and
composition (U, Na, K, and Ca, Figure 5) of the nanoparticles
were also similar to those from the 42 μM U(VI) experiment.
High-resolution TEM (HR-TEM) images of the particles

throughout the 252 μM experiments show small crystalline
platelets with lattice fringes spaced at 5.9−6.2 Å (arrows, Figure

Figure 3. a) I(0) for the 42 μM U(VI) experiments collected using a 4 and 10 m camera length; the data from both experiments were aligned for
clarity; b) I(0)/Q (particle volume; eq 1 and SI) for the aggregates and the primary particles calculated from the experiment performed using the 4m
camera length including the aggregate volume calculated from the fitting results using the Irena macro.

Figure 4. High-resolution TEM images from the 4.2 μM U(VI) experiment after 1 week (a) and the 42 μM U(VI) experiments after 1 day (b) and 1
month (d), including a SAED image from the particles after 1 day (c); selected primary particles with lattice spacings of 3.0−3.3 Å in the images are
highlighted by white circles (a, b, and d); also shown are TEM images of the uranium particles formed during the 252 μM U(VI) experiments after
10 min (e and f), 1 week (h and i), and 1 month (j and k), including a SAED image from the particles after 1 week (g); the arrows in the images (e,
h, and j) point toward the platelets where lattice spacings of 5.9−6.2 Å are visible.
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4e,h,j) and 3.0−3.3 Å. These particles formed part of larger
aggregated structures (Figure 4f,I,k). At 10 min, these platelets
were 2−10 nm in size and the 5.9−6.2 Å lattice fringes were
aligned in some adjacent particles, indicating that the particle
size may be increasing via oriented attachment.45 After 1
month, the crystalline domains with 5.9−6.2 Å lattice fringes
grew to about 25 nm in diameter with a width of ∼4 nm
(arrows, Figure 4j). These observations confirm that initially
nanocrystalline particles formed from solution and grew
through oriented attachment.45

The SAED patterns from the 42 and 252 μM U(VI)
experiments (Figure 4c,g) and EDX spectra (Figure 5) from the
aggregates from the 4.2, 42, and 252 μM U(VI) experiments

were all similar (Figure 4a,b,d,e,h,j). This implies the same
phase formed in all three systems even though their
morphologies (Figure 4) and filtration behavior (Figure 1)
differed. The positions of the dominant diffraction rings in the
SAED images (Figure 4c,g) correspond to d-spacings of ∼3.2,
∼2.7, 1.9, and 1.6 Å, which indicates that the particles were the
alkali/alkaline-earth metal uranate phase clarkeite (Figure 3 in
the SI).46,47 This explains the 5.9−6.2 Å lattice fringes which
correspond to the d-spacing of the (003) diffraction peak,
which can be related to the distance between adjacent U layers
in the uranate structure. The lack of the 5.9−6.2 Å lattice
fringes in the particles from the 4.2 and 42 μM U(VI)
experiments is likely caused by the limited size of the
nanoparticles or limited order between adjacent U layers.
Finally, TEM analyses suggest that in all experiments, initially
nanoparticles formed (1−5 nm) from solution which then
aggregated. In the 252 μM experiment the freshly formed
nanoparticles crystallized presumably via oriented attachment
to form larger platelets.
The U LIII-edge XANES spectra from the 252 μM U(VI)

experiment precipitate and a solution aliquot from the 42 μM
U(VI) experiments are plotted in Figure 6a. Also plotted are
the XANES from uranate17,48 and uranyl standard (Figure 6a)
compounds. Both spectra from the experimental samples show
relatively broad white lines at ∼17.178 keV (dashed line B,
Figure 6a) similar to the uranate standard, while the uranyl
standard has a sharper white line at ∼17.176 keV (dashed line
A, Figure 6a). In addition, the positions of the resonance
features in both experimental XANES spectra match those of

Figure 5. EDX spectra from the uranium particles, imaged using TEM
(Figure 4a,d,j). The EDX peaks are indexed with the corresponding
chemical symbol (for uranium the L and M lines were observed; only
the latter are shown), the copper in the EDX spectra is caused by the
TEM grids, and the silicon is likely caused by contamination from the
TEM grid box.

Figure 6. (a) Normalized XANES spectra from the precipitate from the 252 μM U(VI) experiment and the 42 μM U(VI) solution samples and a
uranate (CaUO4)

17,48 and an in-house uranyl (UO3) standard. The vertical dashed line represents the position of the multiple scattering of the axial
UO bonds from uranyl. (b) Stick and ball representation of the clarkeite structure used to model the EXAFS spectrum, the dashed outline shape
denotes the unit cell of clarkeite. (c) Fourier transform of the EXAFS collected from the precipitate of the 252 μM U(VI) experiment. (d) EXAFS
from the precipitate of the 252 μM U(VI) experiment.

Langmuir Article

dx.doi.org/10.1021/la502832j | Langmuir 2014, 30, 14396−1440514401



the uranate standard (dashed lines C−F, Figure 6a).49 This
indicates that, in the 42 μM U(VI) experiment, uranium is
predominantly present as colloidal uranate nanoparticles, rather
than as dissolved uranyl or a solid uranyl compound.
The extended X-ray adsorption fine structure (EXAFS)

spectrum and corresponding Fourier transform for the 252 μM
U(VI) precipitate are shown in Figure 6c,d. Four consecutive
fits were performed on the EXAFS spectrum. The first fit was
calculated using only U−O and U−U bonds from clarkeite.47,51

As observed in the TEM-EDX analyses, the composition of the
precipitated phase included Na, Ca, and K (Figure 5). Thus,
three subsequent fits were refined by including Na, K, or Ca.47

The U−Oaxial bond length of 1.87 Å corresponds to the U−
Oaxial bond lengths in uranate phases (1.86−1.97 Å)17,51,52 and
is longer than the U−Oaxial bond lengths in uranyl phases
(1.70−1.82 Å).52,53 Furthermore, the U−Oeq1 of 2.22 Å is
comparable to U−Oeq1 distances calculated for several layered
metal uranate phases at 2.15−2.30 Å17,51,52 while U Oeq1
distances in uranyl phases are 2.27−2.49 Å.51,53 Combined
with the SAED (Figure 4g) and the XANES (Figure 6a), this
confirms the formation of an alkali/alkaline-earth uranate phase
in the 252 μM U(VI) experiments (and, by extension, in the 4.2
and the 42 μM U(VI) experiments). Furthermore, adding Na,
K, or Ca to the EXAFS model significantly improved the overall
fit (Table 3) with the result resembling the structure of
clarkeite ((Na,K,Ca)UO2O(OH)·(H2O)0−1, Table 4 and
Figure 6b−d).47,51 However, in relation to the structure
previously determined,47 the oxygen coordination around
uranium appears distorted; the U − Oeq distances were split
between bond lengths of 2.22 and 2.54 Å (Table 3) instead of
only at 2.30 Å (Table 4). This is similar to the observation of
Catalano and Brown51 (Table 4) who explained this by
suggesting clarkeite is not truly hexagonal, and variable
hydration of clarkeite could cause multiple uranium crystallo-
graphic positions and changes in the cation occupation.
Furthermore, the U−Na distance is ∼5% shorter than
previously determined,47,51 which could be caused by
distortions induced by variable hydration or the incorporation
of foreign elements such as Ca and K in the interlayer (Figure
5).51 Interestingly, the EXAFS fits were also improved by the
addition of K and Ca (Table 3), indicating that these may be

replacing some of the Na in the interlayer of clarkeite, which
has been observed previously in natural samples.47 Thus, the
identification of a clarkeite-type phase containing a mixture of
Na, K, and Ca is confirmed, which is consistent with the
formation of similar phases in other high-pH systems.54,55

Nanoparticle Solubility. As discussed previously uranium
in the 4.2 and 42 μM U(VI) experiments (Figure 6a) was
present as colloidal clarkeite nanoparticles. Additionally, the
PHREEQC calculations show that if the solutions were in
equilibrium with clarkeite, 100.0 and 99.8% of the U(VI) would
be in the solid phase in the 42 and 4.2 μM U(VI) experiments,
respectively. However, because reducing the size of nano-
particle tends to increase their solubility,56 a smaller proportion
of U(VI) could be in the solid phase. The solubility of a phase
tends to increase with decreasing nanoparticle size as described
(increasing specific surface area, A (m2/mol)) via eq 2,57−59

σ= +K K A
RT

log[ ] log[ ]
2
3sp,nano sp (2)

where Ksp and Ksp,nano are the ion activity products at
equilibrium with a bulk and nanoparticulate phase, respectively
(Ksp = 109.4),12 T is the absolute temperature (239 K), R is the
universal gas constant (8.3145 J/K), and σ is the surface free
energy (J/m2). However, the surface free energy of clarkeite is

Table 3. Summary of the EXAFS Parameters Fitted for a Uranium Phase without Na, for Clarkeite (NaUO2O(OH)·(H2O)0−1)
and for Clarkeite Where Sodium Was Substituted for Potassium and Calcium (K-Clarkeite and Ca-Clarkeite, Respectively)

no Na clarkeite K-clarkeite Ca-clarkeite

reduced χ2 80.93 49.56 67.30 64.67

R-factor 0.0140 0.00835 0.0118 0.0113

confidencea (%) 95 62 70

E0 1.37(82) 2.04(66) 1.28(85) 1.44(81)

Nb Rb σ2b Rb σ2b Rb σ2b Rb σ2b

U−Oax 2 1.87(1) 0.0047(9) 1.87(1) 0.0040(4) 1.87(1) 0.0041(5) 1.87(1) 0.0041(4)
U−Oeq 4.5 2.22(1) 0.006(1) 2.22(1) 0.0055(3) 2.22(1) 0.0054(4) 2.22(1) 0.0054(4)
U−Oeq 1 2.53(3) 0.008(4) 2.54(2) 0.009(3) 2.54(3) 0.008(3) 2.54(3) 0.008(3)
U−Na 1 3.54(2) 0.004(2)
U−K 1 3.76(5) 0.011(6)
U−Ca 1 3.72(4) 0.011(5)
U−U 3 3.83(1) 0.0060(9) 3.83(1) 0.0055(5) 3.82(1) 0.0054(5) 3.82(1) 0.0054(5)
U−U 1 4.30(3) 0.0060c 4.30(2) 0.0055c 4.29(2) 0.0054c 4.29(2) 0.0054c

aConfidence level whether the fit was significantly improved by adding the Na, K, or Ca shell compared to the uranium phase without Na; calculated
using the F-test for EXAFS.50 bN is the coordination number, R is the distance between uranium and the scatterer, and σ2 is the Debye−Waller
factor. cConstrained parameter.

Table 4. Clarkeite Uranium Coordination Environment
Obtained from Literature, Modeled from an XRD Pattern
and an EXAFS Spectrum

clarkeite N R

XRD47 U−Oax 2 1.888
U−Oeq 6 2.299
U−Na 6 3.725
U−U 6 3.954

EXAFS51 U-Oax 2 1.868
U-Oeq 3.3 2.28
U-Oeq 1.7 2.51
U−Na 2 3.71
U−U 2 3.73
U−U 2 3.88
U−U 2 4.60
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unknown; therefore, we have estimated σclarkeite using the
Gibbs−Thomson equation (eq 3).60

σ* = Ω

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

r
k T

2

ln
KB
IAP

sp (3)

where r* is the critical nucleus radius (m), kB is the Boltzmann
constant (1.38 × 10‑23 J/K), IAP is the ion activity product of
the solution with respect to clarkeite prior to nucleation
(calculated for the 42 μM U(VI) experiment as 1013.35), and Ω
is the crystal volume per unit formula as described by the IAP
(a third of the unit cell of clarkeite, 0.0797 nm3).12,47 It is
noteworthy that the nanoparticles nucleate as an amorphous
phase. However, no thermodynamic information is available on
amorphous uranate phases. Thus, we assumed that the
thermodynamic properties of the amorphous phase are close
to clarkeite. As discussed earlier, the SAXS and TEM analyses
indicate that the U(VI) nucleated as ∼1.5 nm particles (r* ≈
0.75 nm); therefore this value was used as an upper limit for the
critical nucleus size. The clarkeite unit cell size was used as the
lower limit of the critical nucleus size (r* ≈ 0.4 nm). Using
these values resulted in a σ for clarkeite of 0.085−0.16 J/m2,
which is low compared to the σ of metaschoepite (0.94 J/m2)
and uraninite (0.47 J/m2).57,61 The rate of crystal growth and
ripening (e.g., Ostwald ripening) are proportional to σ;58,59

therefore, such a low σ could explain the lack of significant
ripening of the primary particles following nucleation.
Combined with the inhibition of aggregation caused by a
highly negative surface charge, this explains the long-term
stability (>32 months) of the colloidal U(VI) nanoparticles.
The σ of 0.085−0.16 J/m2 can now be used in eq 2 to

estimate the solubility of clarkeite nanoparticles with a diameter
of 1.5 nm (A ≈ 1.9 × 104 m2/mol). The resulting Ksp,nano
(109.8−1010.2) was included in the PHREEQC calculations on
U(VI) equilibrium concentrations in the experimental solutions
(95 mM Na, 95 mM K, and 0.14 mM Ca) with 42 and 4.2 μM
U(VI) experiments. This predicted equilibrium concentrations
of ≤0.07 μM U(VI), and as described previously, the
equilibrium concentration changed minimally (∼0.074 μM
U(VI)) when equilibrium with calcite was added to the
PHREEQC calculations. These values would mean that 99.8
and 98.3% of the U(VI) would be in the solid phase in the 42
and 4.2 μM U(VI) experiments, respectively. This supports our
interpretation that U(VI) is predominantly colloidal in all
experiments rather than dissolved uranyl.

■ CONCLUDING REMARKS
This study has identified the formation of nanoparticulate,
stable U(VI) clarkeite-type colloids at high-pH conditions
relevant to geological disposal and contaminated land.8,9,23,55

Time-resolved scattering data and TEM images showed that
these particles nucleate as amorphous nanoparticles (o.d. =
1.5−1.8 nm) within a few minutes and that ∼50% of the
colloids are present as aggregates 20−60 nm in size, which is
stable for over 2.5 years. Within 1 day the nanoparticles
crystallize and exhibit a clarkeite-type crystal structure.
The long-term stability of U(VI) as a nanoparticulate phase

at high-pH conditions is a significant new observation.
Thermodynamic calculations show that clarkeite-type U(VI)
nanoparticles are oversaturated at very low concentrations (>
0.07 μM) even when including equilibrium with calcium
carbonate into the system. This suggests that these clarkeite

nanoparticles may be significant across a range of systems and
may help explain the high “solubility” of U(VI) observed under
high-pH conditions by past workers18 which was previously
ascribed to formation of aqueous UO2(OH)4

2− species. The
results presented suggest that under high-pH conditions there
is a potential new mechanism for U(VI) to be transported as a
colloidal phase in cementitious environments.
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SAXS data analyses 

The Irena macro uses an extension of equation 1 (a summation to 
account for multiple particle shapes, sizes and polydispersity) to 
fit the scattering intensity within a Small Angle X-ray Scattering 10 

(SAXS)  pattern 1, 2: 

 ���� � ���	�
����, ������ (1) 

where I(q) is the scattering intensity at each value of the 
scattering vector q (Å-1). The absolute scattering intensity caused 
by particles in a medium is dependent on the particle 15 

concentration in g / ml (c) and the electron density of all the 
particles in mole equivalents / g (MW). I(q) is described by the 
form factor (P(q,d)) which accounts for the intra-particle 
interference of particles with a diameter of d, and the structure 
factor (S(q)) which accounts for all inter-particle interferences of 20 

X-rays. Scattering analyses were performed on very dilute 
solutions (e.g. 42 µM U(VI)), thus inter-particle interferences of 
X-rays can be neglected and the structure factor approximates 
unity. KSAXS is a constant that represents the scattering contrast in 
SAXS.  25 

Additionally, the SAXS patterns from the in-situ time resolved 
experiments were also analysed using the method described by 
Liu et al.3. The Guinier region of a SAXS scattering pattern 
(qRg < 1.3) can be approximated with equation 22, 4-6 where Rg is 
the radius of gyration (equation 3).2 The I(0) is the extrapolated 30 

intensity at q=0 in a ln(I(q)) vs. q2 plot (a Guinier plot), and is a 
function of the particle volume (Vp), particle number (n) and 
electron density difference between the particles and the medium 
(∆ρ; equation 4). 2, 3, 7  
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SAXS patterns can be visualized using a Kratky plot (I(q)q2 vs. q 

(Fig. 1). From a Kratky plot, the invariant (Q) can be calculated 
by integration of the scattering pattern from q = 0 to q = ∞ 40 

(equation 5)2, 5, 7. Q is a function of the fraction of the scattering 
particles (φ) and ∆ρ (equation 6).2, 3, 7 In equation 6, (1 – φ) can 
be assumed to be approximately unity in a dilute system. Hence, 
equation 7 can be rewritten as a function of the particle volume 
and particle number (equation 7). 45 

 ' � (
�)� * ��������+

,  (5) 

 ' � -�1 � -��Δρ�� (6) 

 ' 0 !"#�Δρ�� (7) 

When I(0) and Q have been determined, these can be used to 
calculate the particle volume and particle number using equations 50 

8 and 9, respectively.2-4 
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If a dilute suspension (no inter-particle interferences of X-rays) 
has two particle populations with a sufficient difference in 55 

particle size, the scattering from the individual particle 
populations show features at different q values in the scattering 
patterns and Kratky plots (Fig. 1). From this, a Q and I(0) can be 
estimated for both particle populations, separately. Thus equation 
8 and 9 can also be used to estimate the Vp (and thus the particle 60 

diameter) and particle number (and thus the volume fraction for 
each particle population) for both particle populations. An 
example of this type of analysis from a simulated scattering 
pattern with two particle population is given in Fig. 1 and Table 
1.8 65 

 
Fig. 1 Simulation of a SAXS pattern on a log-log scale (a) and the 

corresponding Kratky plot (b) from a system with 2 particle populations 
as described in Table 1. 

Table 1 Calculations performed on the simulated SAXS pattern shown in 70 

Fig. 1. 

 Simulated   Estimated using equation 5, 7 and 8  

Population Particle 
diameter 

Volume 
fraction 

 I(0) Q Particle 
diameter 

Volume 
fraction 

1 20 nm 50 %  1143 0.0306 20.7 nm 49 % 
2 2000 nm 50 %  8.96E8 0.0316 1892 nm 51 % 

 
It has to be noted that the results from equations 8 and 9 are only 
quantitative when full scattering patterns (qmin → 0 and 
qmax → ∞) are collected and the absolute intensity is known.9 If 75 

data are missing at large q values then Vp will be overestimated, 



while if data are missing at low q values of Vp will be 
underestimated. Furthermore, additional information on the 
structure of the particles would need to be collected (∆ρ) to allow 
the calculation of the absolute particle numbers.  

Solution chemistry  5 

 
Fig.2 Solution data from the 42 µM U(VI) and 4.2 µM U(VI) 

experiments; the error bars on the data from the 42 µM U(VI) experiment 
are the standard deviation of triplicate experiments 

 10 

Selected Area Electron Diffraction 

 
Fig. 3 Selected Area Electron Diffraction images from the 1 day 42 µM 

U(VI) and the 1 week 252 µM U(VI) experiments, the quarter circles 
represent the Bragg reflections for clarkeite that are more than 10% the 15 

intensity of the maximum intensity peak (the thickness of the quarter 
circles is proportional to the intensity of the reflections). Miller indices 

for Bragg reflections more than 25% the intensity of the maximum 
intensity peak are labelled   
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