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Abstract

Like stock market prices, housing prices often exhibit temporary booms and busts.

A possible explanation for the observed abrupt changes is offered by the stochastic

catastrophe model. This paper addresses the question whether the catastrophe model

can describe and predict the dynamics of housing markets. We fit a stochastic cusp

catastrophe model to empirical housing market data for six OECD countries, US, JP,

UK, NL, SE and BE. Two different estimation approaches are considered – Cobb’s

method and Euler discretization. The analysis shows that while Cobb’s approach

describes the long-run stationary density better, Euler discretization is more tailored

for time series, as it provides better one-step-ahead predictions. Proceeding using the

Euler discretization method we discuss the dynamics of housing markets in terms of

the multiple equilibria cusp catastrophe model. By considering the long-term interest

rate as an exogenous variable we obtain new insights into the policy implications of

interest rate levels, in particular concerning the stability of housing markets.
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1 Introduction

The collapse of the U.S. housing bubble in 2007 was followed by a worldwide financial

crisis. This tragedy has raised great concerns of housing bubbles among financial reg-

ulators and researchers. Like stock market bubbles, housing bubbles in hindsight often

can be identified with unjustified increases in housing prices before they crash. Fig. 1

illustrates the bust phase of housing price cycles surrounding banking crises from 1899 to

2008 using real housing prices (Reinhart and Rogoff, 2009). The historical average of the

declines from peak to trough is 35.5 percent. A number of countries with major housing

crashes are included. For instance, Finland, Colombia, the Philippines and Hong Kong

have experienced the most severe real housing prices crashes in the past 25 years. The

severity of these crashes amounted to 50 to 60 percent from peak to trough. Notably, these

housing price declines have been quite long lived, averaging roughly 6 years. After the

housing market crash of Japan in 1992, real housing prices declined for a consecutive 17

year period. In particular, housing price declines are even longer lived than equity price

declines. The average historical downturn phase in equity prices lasts 3.4 years, about half

of the downturn phase in housing prices (Reinhart and Rogoff, 2009). The International

Monetary Fund (IMF) recorded that housing price busts lasted nearly twice as long and

led to output losses that are twice as large as for asset price busts (IMF World Economic

Outlook, 2003). Moreover, financial crises and recessions are often preceded by housing

market crashes (Reinhart and Rogoff, 2009). The credit crisis and the global financial crisis

in 2008 are convincing examples. After housing prices declined in the latter half of 2007,

the secondary mortgage market collapsed. A complex chain reaction almost brought down

the worldwide financial system. Furthermore, housing market bubbles are considered as

leading indicators of financial instability and crises (Davis and Heathcote, 2005). For the

above reasons, a good understanding of the instability in housing markets is crucial.

Housing market models have been studied extensively in the literature. Unfortunately,

most of the available research in macroeconomics is mainly based on state-of-the art dy-

namic stochastic general equilibrium (DSGE) models which are based on fundamentals.

However, these traditional models have difficulty explaining the observed booms and busts

in housing prices. A series of papers by Shiller have argued that the changes in economic

fundamentals such as population growth, construction costs, interest rates and real rents

did not match up with the observed house price fluctuations (Case and Shiller, 2003; Shiller,
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Figure 1: The bust phase of housing price cycles surrounding banking crises. Left panel:

peak-to-trough price declines; Right panel: years duration of downturn. [Reproduced with

publisher’s permission from Reinhart and Rogoff (2009)].

2007, 2008, 2012, 2015). Davis and Heathcote (2005) also suggested that DSGE models

with housing consumption and production were unable to capture the instability of house

prices.

During the last decades an increasing number of researchers have recognized economic

systems as complex systems with multiple equilibria. Recently, a theoretical approach us-

ing heterogeneous agent models (HAMs) has been introduced to housing markets, inspired

by the work on heterogeneous agent based financial market models; see, for instance, Brock

and Hommes (1997; 1998) and the comprehensive survey in Hommes (2013)). Kouwenberg

and Zwinkels (2015) developed and estimated a HAM model for the U.S. housing market,

and showed that the estimated model produces boom and bust price cycles endogenously.

Dieci and Westerhoff (2012, 2013, 2015) also investigated the speculative behavior in hous-

ing markets using a HAM approach, identifying a variety of situations leading to irregular

endogenous dynamics with long lasting, significant price swings around the fundamental

price, like those observed in actual markets. Bolt et al. (2014) established and estimated a
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HAM model for eight different countries, and found evidence of heterogeneous expectations

from empirical data and identified temporary house price bubbles for various countries.

Although HAMs turned out to be successful theoretical tools to capture temporary

deviations from market equilibrium, a related statistical time series analysis method is still

lacking. In this paper, we therefore consider and compare various statistical methods to

describe the price dynamics governing real housing price time series. Catastrophe theory

has been suggested to be a good candidate approach for describing (parts of) the econ-

omy (Zeeman, 1974); it can capture the inherent instability in many nonlinear dynamical

systems and has proven to be an extremely successful tool to investigate the qualitative

properties in a wide range of different complex systems, ranging from physics and engi-

neering to biology, psychology and sociology. Its applications involve urban and regional

systems (Wilson, 1981), quantum morphogenesis (Aerts et al., 2003), the stability of black

holes (Tamaki et al., 2003), the size of bee societies (Poston and Stewart, 2012), the cog-

nitive development of children (Van der Maas and Molenaar, 1992), sudden transitions in

attitudes (Van der Maas et al., 2003) and so on. In all these applications, the behavior

of the observed system shows sudden and discontinuous changes or critical transitions as

a result of a small change in one or more control variables. Catastrophe theory offers a

mathematical basis for the number and the type of critical points for the classification of

nonlinear dynamical systems. Since the economic system has become widely recognized as

a complex system (see e.g. the special issue of JEDC on Complexity in Economics and Fi-

nance, edited by Anufriev and Branch (2009)) displaying quick transitions such as market

crashes, catastrophe theory might be a good candidate to explain its extreme fluctuations.

Zeeman (1974) already proposed that some of the unstable behavior of stock exchanges

could be explained by a model based on catastrophe theory. A similar model can also be

applied to currencies, property markets, or any market that admits speculators. Barunik

and Vosvrda (2009) and Barunik and Kukacka (2015) followed Zeeman’s suggestion and

fitted a stochastic cusp catastrophe model to stock market data. They provided an impor-

tant shift towards the application of catastrophe theory to stock markets. In particular

their examples showed that stock market crashes were better explained by cusp catastrophe

theory than other models.

In this paper, following up on the idea of Zeeman (1974), we fit a stochastic cusp

catastrophe model to housing market data. To the best of our knowledge this has not

been done before. The aim of this paper is twofold. Firstly, we compare two estimation
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methods: Cobb’s method and Euler discretization. We show that Euler discretization

gives better forecasting ability than Cobb’s method in a time series context. Secondly, we

obtain insights into the underlying mechanisms of the instability of housing markets by

interpreting the estimated cusp catastrophe models. We also investigate the link between

interest rates and housing price dynamics.

Our analysis sheds some light on the application of catastrophe theory to time series

data in social science. We fit a stochastic cusp catastrophe model to housing markets in

six different countries: The United States (US), Japan (JP), The United Kingdom (UK),

The Netherlands (NL), Sweden (SE) and Belgium (BE). Our results show how the number

and the stability of the equilibria of the system can change depending on the interest rate

for each country. This scenario can be used to explain several housing price bubbles and

crashes in empirical data, such as UK 1978, 1980, 1990, NL 1978, 1990, and the depression

of SE after 1990. The main policy implication of our study is that policy makers should

adopt an interest rate policy that prevents the system from getting too close to the cusp

curve that may induce a systemic market crash. To achieve this, the cusp catastrophe fit

could provide a reasonable guidebook.

This paper is organized as follows. We first introduce, in Section 2, the cusp catastrophe

theory and its application to housing markets. Subsequently, we discuss the empirical

methods of Cobb and Euler discretization, estimation variables and empirical data in

Sections 3 and 4. The results of the Euler discretization approach are presented and

discussed in Section 5. We provide a number of concluding remarks in Section 6.

2 Catastrophe Theory

Catastrophe theory has been first proposed by the French mathematician René Thom

(1972). Before his work, most models only described phenomena with smooth and con-

tinuous changes. However, the world is full of sudden irregularities and unpredictable

transitions. The proposed catastrophe theory has shed some light on the underlying “laws

of nature”. Zeeman cooperated with Thom and proposed catastrophe theory applications

in the fields of economics, psychology, sociology, political studies, and others (Zeeman,

1974, 1977). In particular, he proposed the application of the cusp catastrophe model to

stock markets and qualitatively described the bull and bear markets as a result of interac-

tion between two main types of investors: fundamentalists and chartists (Zeeman, 1974).

5



This work contains a number of important behavioral finance elements, which later led to

research on HAM models. However, the biggest difficulty in the application of catastrophe

theory arises from the fact that it was developed for deterministic systems, while most

scientific contexts require one to allow for at least some random noise. In order to apply

it directly to behavioral science, where random influences are common, a bridge between

deterministic and stochastic catastrophe theory is needed. Loren Cobb (1981a) addressed

this challenge by developing a stochastic version of catastrophe theory based on stochastic

differential equations (SDEs).

The stochastic cusp catastrophe model corresponds to a specific parametric SDE, that

allows for a cusp bifurcation with a multiple equilibria parameter region and corresponding

critical transitions. Barunik and Vosvrda (2009) and Barunik and Kukacka (2015) fitted

the stochastic cusp catastrophe model to stock market data and showed that it could

explain stock market crashes better than linear models. As noted in the Introduction,

housing market crashes often take place prior to financial crises and recessions, which is

why housing bubbles are considered as leading indicators of financial instability and crises.

To the best of our knowledge there are no existing cases of housing market analyses based

on catastrophe theory. Therefore, our main goal is to use catastrophe theory to model the

dynamical behavior in housing markets.

Catastrophe theory provides a mathematical basis for describing systems involving

discontinuous and divergent phenomena. In particular, it is effective for describing systems

where gradually changing forces can lead to abrupt changes in behavior. It is based on

a single variable nonlinear dynamical system, which follows, in the noise-less case, the

differential equation

dyt = −∂V (yt; θ)

∂yt
dt, (1)

where yt represents the state of the system. This implies that the system changes in

response to a change in V (yt; θ), where V (yt; θ) is a potential function which is deter-

mined by a control parameter θ determining the specific structure of the system. The

system is in equilibrium when the spatial derivative of the potential function equals 0, i.e.

dV (yt; θ)/dyt = 0. The equilibrium corresponds either to a maximum or a minimum of

the potential function V (y; c) with respect to y. When V (y∗; θ) is a (local) minimum, the

equilibrium point y∗ is stable; the system will return to it after a small perturbation with

respect to system’s state. Likewise, an equilibrium point y∗ is unstable if the potential
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function V (y∗; θ) corresponds to a (local) maximum. In that case even a small perturba-

tion will drive the system away from the unstable equilibrium state. The local stability

properties of these equilibria can change when control variables affecting θ change, which

is why these systems can give rise to unexpected bifurcations when the control variables

change. Therefore, catastrophe theory can be employed in systems in which equilibrium

states can be driven towards instability, such as gradient dynamical systems with critical

points.

2.1 Cusp Catastrophe

One of the findings of catastrophe theory is that the behavior of deterministic dynamical

systems around the critical points of potential function V (yt; θ) can be characterized by

a set of seven canonical forms, with no more than four control variables and one or two

canonical state variables (Thom,1972; Zeeman, 1976; Gilmore,1993). In behavioral sci-

ences, the most commonly used canonical form is the so-called cusp catastrophe. In terms

of a normalized variable zt, it describes sudden, discontinuous transitions in the equilib-

rium states depending on two control parameters α and β, within the normal form of the

system given by

V (zt;α, β) =
1

4
z4
t −

1

2
βz2

t − αzt. (2)

The equilibria correspond to the solutions to the cubic equation

−∂V (z;α, β)

∂z
= −z3 + βz + α = 0. (3)

For descriptive purposes, Cobb (1981b) proposed to use Cardan’s discriminant, defined as

δ = 27α2 − 4β3, (4)

to distinguish the case of three solutions from the case of one solution; for δ < 0 there are

three equilibria, while there is only one for δ > 0. Fig. 2 provides a visualization of the

equilibria within the cusp catastrophe model. It shows the cusp equilibrium surface in a

three dimensional space. The folded surface with a cusp fold represents the equilibrium

surface of the system. The floor is a two dimensional control plane which is determined

by a set of control parameters, α and β. The height “predicts” the value of the system’s

equilibrium state given the values of the control parameters.
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Figure 2: Equilibria in the cusp catastrophe model. [Figure produced using the cusp R

package].

The center of the graph shows two sheets representing the behavior of the system,

connected by a sheet in the middle that makes it into a continuous, folded, surface. The

difference between the middle sheet and the other two sheets is that the middle sheet

represents the unstable equilibrium of the system, and the other two stable equilibria.

The curve defining the edges of the fold cusp projected onto the control plane give a cusp

shaped region. The cusp which marks its boundary is called the bifurcation set (Zeeman,

1974, 1976), for which Cardan’s discriminant δ is zero. For δ > 0, the system has only

one stable equilibrium state. There is only one predicted state value. However, within the

cusp fold area, δ < 0, and the surface predicts two possible stable state values instead of

one. Moreover, as the system parameters vary, the system might show hysteresis. The

state can jump between the two possible state values, but the jump from the top sheet to

the bottom sheet requires a different value of the control parameter than the jump from

the bottom to the top sheet.

8



2.2 Stochastic Cusp Catastrophe

Although Zeeman 1977 suggested that catastrophe theory could be applied to multiple

disciplines, a practical empirical investigation requires a model that allows for stochastic

shocks. In order to address this, and to build a bridge between catastrophe theory and real

scientific data, several stochastic formulations of catastrophe theory that allow empirical

investigations have been proposed (Oliva et al., 1987; Guastello, 1988; Alexander et al.,

1992; Lange et al., 2000). Among the various methods, that of Cobb and Watson (1980)

is usually considered the most appealing. They proposed to combine deterministic catas-

trophe theory with stochastic systems theory by using stochastic differential equations

(SDEs). It leads to the definitions of stochastic equilibrium state and stochastic bifur-

cation that are compatible with their deterministic counterparts, so that a link between

the potential functions of deterministic catastrophe systems and the stationary probability

density functions (PDFs) of stochastic processes is established.

Assuming that the (canonical) variable zt is governed by the potential function of

Eq. (2), and that there is a driving noise term with variance σ2
z per time unit, the dynamics

can be written in terms of the stochastic differential equation (SDE)

dzt = −∂V (zt;α, β)

∂zt
dt+ σzdWt. (5)

=
(
−z3

t + βzt + α
)

dt+ σzdWt,

where −∂V (zt;α, β)/∂zt dt is the drift term, σz is the diffusion parameter, Wt represents

a Wiener process, zt is the dependent variable, and α and β are the “canonical variates”

which are assumed to be smooth functions of v observable exogenous control variables

x1, . . . , xv, v = 0, 1, . . ..

Since for α = 0 the stationary PDF of zt is symmetric and the sign of α determines

whether it is left or right skewed, α is called the “asymmetry factor”. If β is increased

sufficiently, the stationary density changes from unimodal to bimodal. Therefore β is called

the “bifurcation factor” determining the number of modes of the density.

2.3 Cusp Catastrophe Behavior of Housing Markets

The best way to understand the nature of the cusp catastrophe model is to illustrate it by

examples. Zeeman has considered some popular applications of the cusp catastrophe model

in a number of different disciplines, including ecology, physics and psychology (Zeeman,
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1974). His work was the first attempt to explain the unstable behavior of a stock market

using the catastrophe model. The housing market has several common characteristics with

the stock market. Their dynamical behaviors are connected in some ways. The boom and

bust cycle of housing prices has also been found to be at least partly driven by heterogeneous

expectations of agents (Bolt et al., 2014). Several theoretical models have been shown to

perform well in the analysis of housing markets and stock markets. For instance, HAMs

are successful in capturing the instability in both the stock market and the housing market

(Brock and Hommes, 1997, 1998; Hommes, 2013; Kouwenberg and Zwinkels, 2015; Dieci

and Westerhoff, 2012, 2013, 2015; Bolt et al., 2014). Finally, since Zeeman has suggested

that the catastrophe model could be used to model financial markets, it might also be

useful in the housing market.

For the housing market, the cusp catastrophe model represented visually in Fig. 2 can

be interpreted as follows. The z-axis of the 3-dimensional space, y, represents the state

variable. In our analysis this will be the housing price level in terms of its relative deviation

from the fundamental price. The folded surface with three levels of sheets represents the

three equilibrium prices of the system. The set of control parameters α and β forms a

two-dimensional control plane.

Critical transitions can now occur when the control parameters make the state move

across the multiple equilibrium area of the cusp equilibrium surface. Each point on the top

and bottom sheets of this surface gives an equilibrium of the system. If the state is on the

top sheet and follows path A on the control surface, the corresponding path moves to left

on the top sheet until it reaches the fold curve; the top sheet then vanishes, and the path

will suddenly jump to the bottom sheet. In this way, a small change in control parameters

can produce a sudden large change in the state of the system. Alternatively, path B on

the control surface outside of the cusp bifurcation exhibits the behavior of a more tranquil

market. Its corresponding path moves to the bottom sheet slowly and smoothly, without

critical transitions. A similar mechanism of boom-bust cycles has recently been described

by Dieci and Westerhoff (2015) in an expectations-driven dynamical context.

The mechanism of housing market crashes can be understood in terms of the cusp

catastrophe model as follows. Suppose that the control parameters are such that the

housing market has multiple equilibria, and the market is on the top sheet of the equilibria

surface. That is, the market state is in the high price equilibrium, while there is another,

low price, stable equilibrium on the bottom sheet of the equilibrium surface. A crash
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can then be induced by any event that changes the control parameters just enough to

push the state variable over the fold curve, so that it falls off the “cliff” and jumps to

the bottom sheet. In particular, if the state is in the upper stable equilibrium within the

multiple equilibria region and very close to the cusp curve, even a small perturbation can

induce large market collapse. Similarly, “negative” crashes (booms) could be induced by

an upward jump from the bottom sheet to the top sheet. Additionally, due to exogenous

disturbances (noise) the system could also transition from one stable equilibrium to another

without passing through the cusp curve. The cusp catastrophe model can also explain the

slow recovery from a crash in housing markets. The recovery is affected by hysteresis;

simply reversing the control parameters back does not have major effects until the control

parameters exit the multiple equilibria region again. An alternative route to recovery is

obtained by smoothly following the reversal of path B.

3 Estimation Methods

In the estimation of the cusp catastrophe model, the control parameters α and β are usually

assumed to be (well aproximated by) linear functions of the exogenous variables x1, . . . , xv,

that is,

α = α0 + α1x1 + α2x2 + ...+ αvxv (6)

β = β0 + β1x1 + β2x2 + ...+ βvxv.

We will follow this commonly made assumption. The canonical dependent state variable

z is also assumed to be a linear function of or more observable dependent state variables

y1, . . . , yk of the system, that is,

z = w0 + w1y1 + w2y2 + . . .+ wkyk, (7)

where w0, w1, ..., wk are coefficients.

Fitting the cusp model to empirical data thus involves estimating the coefficients

w0, w1, . . . , wk, α0, α1, . . . , αv and β0, β1..., βv. In our applications we will only consider

cases where v = 0 (constant control parameters) or v = 1 (both control parameters being

linear functions of the interest rate), and k = 1 (a single dependent variable y) z = w0+w1y,

or, reparameterized, z = (y−λ)/σ, where λ is a location parameter and σ a scale parameter.
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3.1 Cobb’s Method

The most common estimation method that allows quantitative comparison of catastrophe

models with empirical data is that proposed by Cobb (Cobb, 1978, 1981a, 1981b; Cobb

and Watson, 1980; Cobb et al., 1983). He established a stochastic cusp catastrophe by

simply introducing a stochastic Gaussian white noise, representing the noise term in the

SDE given in Eq. (5).

In this approach, maximum likelihood estimation is applied using the cusp PDF. To sim-

plify the estimation procedure, instead of using the conditional PDF f(zt|zt−1, zt−2, ...;α, β),

Cobb considered the stationary PDF which is given by solving the corresponding Fokker-

Planck equation. As time t increases, the conditional PDF f(zt|zt−1, zt−2, ...;α, β) converges

to a stationary and time invariant form f(zt|α, β). Upon using the linear transformation

of the dependent variable, zt = (yt−λ)/σ, the stationary distribution of the system’s state

variable y can be expressed as

fY (y) = ψ exp

[
α̃

(
y − λ
c

)
+

1

2
β̃

(
y − λ
c

)2

− 1

4

(
y − λ
c

)4
]
, (8)

where α̃ =
(
σ2
z

2

)− 3
4
α and β̃ =

(
σ2
z

2

)− 1
2
β, c = σ

(
σ2
z

2

) 1
4
, and ψ is a normalization constant.

For a derivation of the this, see Appendix A.1.

Assuming a random sample, the relevant theoretical PDF to be used in the estimation

is the stationary PDF. The stable and unstable equilibria associated with the potential

function turn out to correspond to the modes and anti-modes of the stationary PDF,

respectively. Such a correspondence does not hold in general, but results from the SDE (5)

being homogeneous, that is, the diffusion parameter σz does not depend on z (see e.g.

Wagenmakers et al., 2005). The unstable middle sheet of the equilibrium surface in the

stochastic case corresponds to the low probability mode between the two high probability

modes. The stochastic bifurcations correspond to changes in the number and type of

the modes of the stationary PDF. As noted above, a qualitative change in the potential

function is identical to a qualitative change in the PDF with respect to the change of

control parameters. This is why, for instance, the PDF changes from unimodal to bimodal

as the bifurcation parameter β increases.

Based on Cobb’s statistical catastrophe theory Hartelman (1997), Hartelman et al.

(1998), and Grasman et al. (2009) implemented and extended Cobb’s estimation method.

They presented robust and practical software which made it easy to fit cusp catastrophe
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models on empirical data statistically. In these approaches, Cobb’s method is combined

with the subspace fitting method of Oliva et al. (1987).

Although Cobb’s method has proved to be a successful tool for estimating several

multiple equilibria systems, the assumption that the observations are obtained as a random

sample from the stationary distribution are quite restrictive. For this to be a reasonable

assumption in practice requires a system in which the state variable of interest changes

much more quickly than the control parameters. This method gives a good fit of the overall

stationary density for a cross-sectional data set, or for those systems with quickly changing

state variables relative to control parameters. For typical time series data containing

serially dependent observations, or for systems in which the control parameters change

relatively fast compared to the state of the system, so that the state variable does not have

sufficient time to converge to the stationary distribution, the forecasting ability of Cobb’s

method would be poor.

3.2 Estimation Using Euler Discretization

In order to estimate the stochastic differential equation (SDE) of a cusp catastrophe from

time series observations, we consider an alternative numerical method – Euler discretiza-

tion, which seeks to integrate the evolution determined by SDE over finite time intervals,

and thus to arrive at a discrete time approximation of the dynamics. The time variable is

subdivided into intervals of length ∆t. Then we can approximate the solution at the cor-

responding discrete times. In terms of the rescaled variable yt = λ+ σzt the SDE becomes

(see Appendix A.1)
1

σ
dyt = − ∂V (z;α, β)

∂z

∣∣∣∣
z=

yt−λ
σ

dt+ σzdWt. (9)

Euler discretization leads to an approximate equation for the state yt+∆t in terms of

the current state yt, given by

yt+∆t = yt −
∂V (zt;α, β)

∂zt

∣∣∣∣
zt=

yt−λ
σ

σ∆t+ σσz
√

∆tεt+∆t + h.o.t. (10)

≈ yt +

(
α + β

(
yt − λ
σ

)
−
(
yt − λ
σ

)3
)
σ∆t+ σσz

√
∆tεt+∆t,

where εt+∆t ∼ N(0, 1). The idea is to use this as a regression equation by which the

unknown parameters can be estimated (Florens-Zmirou, 1989; Yoshida, 1992). However,
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the model is over-parameterized in the sense that the forecasts it produces are independent

of the units in which we measure ∆t. We therefore set ∆t = 1 throughout without loss

of generality (i.e. we define one time unit to correspond to one quarter, the time interval

between consecutive observations in our data set).

Due to the nonlinear dependence of the conditional mean on the parameters, the pa-

rameters are estimated using nonlinear least squares (NLS), using the function ‘nls()’ in

R. Although we could alternatively estimate the potential function using ordinary least

squares (OLS) regression (Brillinger, 2007), the coefficients of the estimated model would

then be nonlinearly related to α, β, λ and σ. Using NLS directly provides us with estimates

as well as standard errors of these parameters that can be readily interpreted in terms of

the cusp mcatastrophe model.

Finally, we note that during estimation the location parameter λ is kept fixed at 0 since

there is a fundamental equilibrium at 0 (and the mean of the price fluctuations around

this is assumed to be zero). We found this to stabilize the estimation procedure without

affecting the goodness of fit by much.

3.3 Cobb’s Method v.s. Euler Discretization

Intuitively, Euler discretization could offer a considerable improvement to Cobb’s method

regarding the forecasting ability in a time series setting, where the observations are made

on time scales on which the system is varying only slowly, as might be the case for quarterly

housing price data. To compare the forecasting ability of the two estimation approaches, a

simple and straightforward way is to examine their residuals. Although the data description

and specification of the variables will be given only in Section 4, we here give a brief

impression of the different nature of the residuals for the two methods here.

Fig. 3 shows the plots of residuals against time in the case of the US by using Cobb’s

Method and Euler discretization respectively. Fig. 3 (a) shows strongly correlated residuals

for Cobb’s method, with clear patterns and obvious deviations from randomness. Moreover,

the values of the residuals are relatively large, and widespread, in cases being larger than

0.1 in absolute value. This is due to the fact that the predicted values in Cobb’s method

are estimated based on the closest maximum mode of the stationary PDF rather than by

past information. As Fig. 3 (b) shows, the residuals for the Euler discretization approach

are much more randomly distributed and less widely spread, with values smaller than 0.04

14



●●●
●

●●
●
●

●
●

●

●
●
●●●●●

●●
●
●●●

●●●
●

●●

●
●
●●●

●●

●

●

●

●

●

●
●●

●
●
●
●

●

●●●●●●●●●●●●●●
●●
●
●●●●●

●●●●●
●●●

●
●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●●
●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●
●

●●●●●

●
●

●
●●●●

●●
●
●

1970 1980 1990 2000 2010

−
0.

1
0.

0
0.

1
0.

2

US

Time

R
es

id
ua

l

(a) Cobb’s Method

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●●

●

●●●
●

●

●
●

●

●

●

●●
●●

●

●
●

●

●
●

●
●●

●
●

●

●●

●

●●●
●
●
●
●
●

●

●

●
●●
●●●

●
●
●
●
●●
●

●
●
●●●

●
●
●
●

●●●●

●
●●●●

●

●
●●

●
●
●

●
●

●

●

●

●

●●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

1970 1980 1990 2000 2010

−
0.

03
0.

00
0.

02

US

time
R

es
id

ua
l

(b) Euler discretization

Figure 3: Time series of residuals obtained using Cobb’s Method and Euler discretization

in the example of US.

in absolute value. This indicates that indeed Euler discretization gives much better one-

step-ahead predictions than Cobb’s method. The residuals in the examples of the other

countries, shown in Figs 11 and 12 in Appendix A.2, show similar patterns.

Table 1: AIC and BIC of Cobb’s method and Euler discretization for different countries.

US JP UK NL SE BE

Cobb
AIC 497.955 491.587 438.482 357.619 361.697 379.087

BIC 510.568 504.200 451.096 370.232 373.258 391.049

Euler
AIC −983.611 −901.021 −715.484 −721.421 −592.250 -782.153

BIC −971.021 −888.431 −702.894 −708.831 −580.719 -770.191

Hartelman (1997) and Grasman et al. (2009) proposed to use Akaike’s Information

Criterion (AIC) and the Bayesian Information Criterion (BIC) to assess the model fitness.

The AIC and BIC in our examples are presented in Table 1. It can be seen that the AIC

and BIC by using Euler discretization are much smaller than using Cobb’s method, which

suggests a better model fit using Euler discretization. It further proves that the one-step-
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ahead forecasting ability of Euler discretization is more promising than Cobb’s Method

with respect to housing prices.

From these results we conclude that Euler discretization is better able to capture the

dynamics than Cobb’s method. Therefore, in what follows, we will analyse the cusp catas-

trophe behavior of housing markets using the Euler discretisation estimation approach.

4 Estimation Variables

We consider the housing markets of six different countries: US, UK, NL, JP, SE and BE.

The variables involved in the estimation of the cusp catastrophe model consist of state

variables and control variables.

4.1 State Variables

A state variable is required to be able to describe the unstable behavior of housing markets.

Bolt et al. (2014) estimated a HAM model for housing markets in different countries and

observed bifurcations driven by a policy parameter (the interest rate) in the dynamics

of the relative deviation of the housing price from the fundamental price. Following these

authors, we also use the relative deviation of housing price from the estimated fundamental

price as state variable, which is denoted by

yt =
pt
p∗t
− 1 ≈ ln pt − ln p∗t . (11)

The fluctuations of the housing price around the fundamental price (based on expected

future rental prices) are described by a model in which agents choose between either buying

or renting house. In this model, agents make their decisions at time t based on the expected

excess return on investing in housing relative to renting during the period between time t

and t+1. The fundamental price is assumed as the price that would prevail under rational

expectations about the conditional mean of the next excess return. In equilibrium, the

annual cost of home ownership must equal the housing rent adjusted for risk. The supply

of the market is the stock of housing. The demand of agents is determined by maximizing

one-period ahead expected excess returns adjusted for risk. By solving the market clearing

condition for the price pt (see Bolt et al. (2014) for a detailed calculation), we obtain the
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price equation

pt =
1

1 + r + a
Et
[
pt+1 + (1 + rrf)Qt

]
, (12)

where Qt denotes the price for renting one unit of housing in the period between times t

and t + 1, r is the sum of the risk free mortgage rate rrf and the maintenance/tax rate,

and a is interpreted as a risk premium of buying a house over renting a house.

The fundamental rental price level Qt underlying the model is assumed to follow a

geometric Brownian motion with drift (cf. Boswijk et al. (2007)):

lnQt+1 = µ+ lnQt + υt+1, {υt} i.i.d.∼ N(0, σ2
υ). (13)

When g = eµ+1/2σ2
υ − 1 and ηt+1 = eυt+1−1/2σ2

υ , one obtains

Qt+1

Qt

= (1 + g)ηt+1, (14)

such that Et(ηt+1) = 1. By applying the law of iterated expectations and imposing the

transversality condition, the fundamental price at time t is found to be

p∗t = Et

[ ∞∑
i=0

(1 + rrf)Qt+i

(1 + r + a)i+t

]
=

1 + rrf

r + a− gQt, r + a > g. (15)

This shows that the fundamental price of housing is directly proportional to the actual

rent level. For details on identifying the parameters in the proportionality factor, which

cannot all be estimated simultaneously, we refer the interested reader to Bolt et al. (2014).

Fig. 4 shows an example of house price and fundamental price in the US from 1970 to 2013.

Fig. 4(a) presents the housing price index pt with the corresponding estimated fundamental

values p∗t . The relative price deviation (pt− p∗t )/p∗t , which we will use as the state variable

y here, is shown, for the US, in Fig. 4(b). Plots for the other countries are presented in

Fig. 13 in Appendix B.

4.2 Control Variables

Since we wish to keep the model stylized and simple to interpret we will allow for only one

control variable. Taking into account a control variable might help us to understand the

role of the control variable in housing market crashes.

One of the parameters which has the greatest influence on the deviations of housing

prices from fundamentals is argued to be the long term interest rate. Several authors have
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Figure 4: Example of housing price and fundamental price for the US from 1970 to 2013.

(Source: Bolt et al., 2014). (a) The housing price index pt with the corresponding estimated

fundamental value p∗t ; (b) The relative difference between the two, (pt − p∗t )/p∗t .

pointed out that monetary policy, especially interest rate has a great impact on housing

prices (Bernanke and Gertler, 1995; Shiller, 2006; Taylor, 2007; Muellbauer and Murphy,

2008; Crowe et al., 2013; Shi et al., 2014). Taylor (2009) argued that the interest rate

policy was responsible for accelerating the housing boom and thereby ultimately leading

to the housing bust. He provided empirical evidence that the unusually low interest rate

policy was a factor in the housing boom during 2008 financial crisis. Moreover, empirical

evidence suggests that several bifurcations involving price equilibria may occur driven by

interest rates (Bolt et al., 2014). Therefore, as an important policy parameter, the long

term interest rate is chosen as our control variable.

4.3 Data Description

The housing markets considered are those of the US, UK, NL, JP, SE and BE. In order to

estimate the model parameters we require time series as long as possible to use as much

information as possible. The investigated time window ranges from the earliest available

year 1970 to 20131. This contains several well-known housing market crashes, such as those

in the United States (2007), Japan (1992), Sweden (1991), the United Kingdom (2007) and

on-going bubbles in many countries.

Quarterly nominal and real house prices for each country are obtained from the Organ-

1The time window for Sweden (SE) is from 1980Q1 to 2013Q1, and for Belgium is from 1976Q2 to

2013Q1, based on the availability in the datasets.
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isation for Economic Co-operation and Development (OECD). The nominal house price is

indexed using 2005 as base year. The real house price index is derived by deflating with

the private final consumption expenditure deflator, which is available from the OECD Eco-

nomic Outlook 89 database. The price-to-rent ratio is defined as the nominal house price

index divided by the rent component of the consumer price index, made available by the

OECD. Interest rates are long-term interest rates that are implied by the prices at which

government bonds are traded on financial markets, not the interest rates at which the loans

were issued. They refer to bonds whose capital repayment is guaranteed by governments

(from the OECD iLibrary database). Therefore, the 10 year government bond yield is

considered a standard indicator of long-term interest rates. They are obtained from the

OECD iLibrary for US, UK, NL, BE. Because the OECD iLibrary did not have the interest

rate dating back to 1970 for JP and SE, those were obtained separately from Datastream.

5 Empirical Results and Discussion

The parameters of the differential equation of the cusp catastrophe model, Eq. (5), are

estimated using the Euler discretization approach. As described in Section 4, the state

variable is the relative deviation of the housing price from the fundamental price. For the

control parameters, we consider two variants: estimation with constant control parameters

α and β, and estimation with the control variable interest rate governing the control

parameters α and β.

5.1 Constant Control Parameters

As a benchmark, we fit the cusp catastrophe model to the housing market data with a

constant control variable. Thus the control parameters α and β are constant and according

to Eq. (6) are given by α = α0 and β = β0. To estimate the stability of the system

statistically, we also calculate the implied values of Cardan’s discriminant δ = 27α2− 4β3.

Recall that δ = 0 indicates the boundary of the multiple equilibria region, and that when

δ < 0, the state of the system is in the multiple equilibria region and there are three

equilibria, one of which is unstable, and the other two stable; if δ > 0, the state of the

system is outside of the multiple equilibria region and there is a unique equilibrium, which

is stable.
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Table 2 shows the estimated parameters and their corresponding standard errors for

all six countries. The parameters λ and σ shift and scale the observed state variable. In

the fit the location parameter λ is assumed to be equal to 0 since there is a fundamental

equilibrium at y = 0. The AIC and BIC indicate the in-sample fitness of the model

(Hartelman, 1997; Grasman et al., 2009) based on the log residual sum of squares, penalized

for the number of model parameters. The standard errors of the transformed parameters

of Cardan’s discriminant δ are obtained by the functional delta method.

Table 2: Estimation results assuming constant α and β. The location parameter λ was

fixed at zero. The values in brackets denote standard errors.

US JP UK NL SE BE

σ
(s.e.)

5.298e+ 00
(2.858e+00)

3.420e+ 00
(2.041e+00)

· 3.056e+ 00
(1.261e+00)

∗ 2.982e+ 00
(1.255e+00)

∗ 2.405e+ 00
(1.348e+00)

· 2.641e+ 00
(3.730e−01)

∗∗∗

α
(s.e.)

7.704e− 05
(5.314e−04)

−4.040e− 04
(4.537e−04)

1.781e− 03
(1.370e−03)

1.448e− 03
(1.361e−03)

2.583e− 05
(9.484e−04)

3.058e− 03
(9.538e−04)

∗∗

β
(s.e.)

−9.632e− 03
(1.795e−02)

1.354e− 02
(1.221e−02)

1.376e− 02
(1.765e−02)

1.353e− 02
(1.756e−02)

1.131e− 02
(2.489e−02)

4.813e− 02
(1.099e−02)

∗∗∗

δ
(s.e.)

3.735e− 06
(1.842e−05)

−5.528e− 06
(2.368e−05)

7.526e− 05
(1.070e−04)

4.673e− 05
(8.298e−05)

−5.773e− 06
(3.799e−05)

−1.934e− 04
(2.146e−04)

AIC −983.611 −901.021 −715.484 −721.421 −592.250 −782.153

BIC −971.021 −888.431 −702.894 −708.831 −580.719 −770.191

∗ ∗ ∗ significant at 0.1% level, ∗∗ significant at 1% level, ∗ significant at 5% level, · significant at 10%

level.

Fig. 5 gives a visual illustration of the estimated values of the control parameters for the

different countries on the projection of cusp equilibrium surface in Fig. 2. The cusp shaped

shaded area is the region of the parameter space for which there are multiple equilibria.

As shown in the legend, each symbol and color indicates the estimated parameters for

one country. The ellipse around it in the same color corresponds to its 95% confidence

region. With 95% confidence, these regions include the points representing the actual

control parameter values. As the estimation results in Table 2 show, the point estimates of

(α, β) for the US, NL and UK are in the single equilibrium region, while JP, SE and BE are

inside the gray multiple equilibria region. Note, however, that since the confidence areas

for all countries considered contain points in the single as well as multiple equilibria region,

one cannot state with 95% confidence for any of the six countries considered, that (α, β) is

within either region. This is reflected by the fact that δ does not differ significantly from
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zero at the 5% significance level for any of the six countries considered (Table 2). Apart

from the insignificant δ-values, graphically the confidence sets for BE and US appear to

be the least ambiguous, in that these nearly lie entirely inside and outside the multiple

equilibrium cusp region, repectively.
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Figure 5: The estimated behavior points of different countries in different regions of the

control plane with respect to constant α and β. The cusp shaped shaded area is the control

plane. The ellipses correspond to confidence regions with confidence level of 95%.

By combining Fig. 5 with the cusp equilibrium surface in Fig. 2, we can infer the most

likely dynamical behavior of the housing market by observing where its state parameters

are located on the cusp equilibrium surface. For instance, BE is most likely inside the

multiple equilibria region where the surface predicts two stable state values instead of one.

With changing control parameters, its state could then follow the path A in Fig. 2 and move

close to the fold curve. A tiny perturbation on the control variables would induce it to fall
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off the cusp “cliff” and jump to a different equilibrium suddenly. The US housing market

is most likely outside the dangerous multiple equilibria regime; if the control variable α

would change, its state point would then follow a path similar to path B in Fig. 2, and

the transition between equilibria would be slow and smooth without experiencing critical

transitions. We could describe analogous scenarios for the other countries, albeit with

larger uncertainty about whether they are in the cusp region of the parameter space.

5.2 Interest Rate as Control Variable
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Figure 6: Estimated control parameters for different countries in different regions of the

control plane. The control variable is the interest rate. The cusp-shaped shaded area is

the control plane.

We next study the situation when the interest rate is used as an exogenous control

variable driving the housing market. Following the estimation methods in Section 3, the

control parameters α and β are now defined by α = α0 + α1x and β = β0 + β1x, where x
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Table 3: Estimated parameters σ, α0, α1, β0 and β1 when using interest rate as the control

variable. The location parameter λ was fixed at zero. The values in brackets denote

standard errors.

US JP UK NL SE BE

σ
(s.e.)

2.097e+ 00
(1.985e+00)

4.482e+ 00
(4.639e+00)

2.773e+ 00
(9.724e−01)

∗∗ 7.495e+ 00
(2.141e+01)

1.485e+ 00
(2.863e−01)

∗∗∗ 2.533e+ 00
(3.422e−01)

∗∗∗

α0
(s.e.)

3.989e− 03
(4.267e−03)

−2.279e− 03
(2.498e−03)

1.318e− 02
(5.629e−03)

∗ 4.748e− 03
(1.361e−02)

2.026e− 02
(5.808e−03)

∗∗∗ 1.475e− 02
(2.678e−03)

∗∗∗

α1
(s.e.)

−5.466e− 04
(5.671e−04)

4.643e− 04
(4.926e−04)

−1.209e− 03
(5.134e−04)

∗ −5.487e− 04
(1.556e−03)

−2.491e− 03
(6.659e−04)

∗∗∗ −1.737e− 03
(3.308e−04)

∗∗∗

β0
(s.e.)

1.232e− 02
(4.638e−02)

−2.995e− 04
(1.572e−02)

−3.181e− 02
(3.449e−02)

−9.390e− 02
(4.172e−02)

∗ 2.489e− 02
(3.020e−02)

5.117e− 02
(2.049e−02)

∗

β1
(s.e.)

−3.929e− 03
(6.085e−03)

−1.115e− 03
(3.199e−03)

4.491e− 03
(4.052e−03)

1.308e− 02
(4.992e−03)

∗∗ 9.192e− 04
(2.533e−03)

−5.549e− 03
(2.301e−03)

∗

AIC −988.770 −912.718 −732.828 −729.114 −630.110 −831.070

BIC −969.885 −893.832 −713.943 −710.229 −612.813 −813.128

∗ ∗ ∗ significant at 0.1% level, ∗∗ significant at 1% level, ∗ significant at 5% level, · significant at 10%

level.

is the interest rate. The scale parameter σ, and the coefficients α0, α1, β0 and β1 are the

parameters to be estimated.

Table 3 shows the estimation results for the different countries. Although the parame-

ters are not significant for a number of countries, to investigate the estimated paths of the

control parameters for the different countries, these are visually displayed in Fig. 6. It can

be seen that the parameters (α, β) trace different paths on the control plane. By comparing

with the benchmark in Fig. 5, we shall see that the interest rate as a control variable can

potentially greatly impact the stability of housing markets. For the housing markets of

NL and UK, although their equilibrium points appear to be located in the stable regions

under constant control parameters (Fig. 5), changes of the interest rate can induce them

to move into the multiple equilibria region in certain periods (Fig. 6). On the contrary,

the paths for US and JP now are outside of the multiple equilibria region.

5.2.1 Leave-one-out cross-validation

In order to assess whether estimated time series models have out-of-sample forecasting

ability, time series are usually divided in an in-sample estimation part and a remaining hold-
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out part on which the out-of-sample forecasting ability is evaluated. However, here this is

practically infeasible due to the small sample sizes (ranging from 132 to 172 observations

here, depending on the country). Dividing the sample into two fairly sized subsamples

would seriously affect the estimation sample size, and still only give a modest number of

out-of-sample evaluations.

We therefore perform leave-one-out cross-validation (LOOCV) (Stone, 1974; Allen,

1974; Geisser, 1975) to compare the forecasting ability of our two estimated models (with

and without the interest rate as control variable) with that of a simple benchmark fore-

cast, being the naive forecast – the optimal forecast for a random walk without drift. The

idea of LOOCV is to leave out the observations one by one from the sample, re-estimate

the model, and forecast the observation that was left out of the sample. In this way one

can obtain an out-of-sample forecast for each observation, without severely affecting the

estimation sample size.

Table 4: LOOCV results (mean squared prediction errors). The smallest values per country

are indicated by bold face print.

MSPE ×104 US JP UK NL SE BE

naive forecast 1.858 3.01 8.868 8.582 6.344 3.116

cusp, no control 1.914 3.10 9.148 8.876 6.534 2.825

cusp, interest rate 1.905 2.91 8.225 8.529 4.850 2.042

Mean squared errors obtained with LOOCV for the naive forecast and the stochastic cusp model

without and with interest rate as a control variable.

The LOOCV mean squared prediction errors (MSPEs) are reported in Table 4, which

for comparison also contains results for the naive forecast ŷt+1 = yt, i.e. the last observed

value. The results indicate that for all countries except US the out-of-sample forecasting

ability of our model without the interest rate as a control variable performs worse than

the naive benchmark, but the model with the interest rate as control variable outperforms

both other models. The US is an exception for which the naive forecast gives the smallest

MSPE. The addition of the control variable interest rate to the cusp model in all cases leads

to smaller MSPEs. Upon adding more control variables the forecasting ability of the cusp

model might increase further; it is beyond the scope of the present paper to investigate

this.
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5.2.2 Equilibria
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Figure 7: Time series of housing price deviations and predicted equilibria in different

countries. The black line represents the time series of housing price deviations. The scatter

plots indicate estimated equilibria when the interest rate is used as control variable. The

red and blue lines indicate the estimated equilibria for constant parameters.
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Fig. 7 shows the model-implied equilibrium values as a function of time and the time

series of housing price deviations from fundamentals for the different countries. It allows

us to investigate the equilibria of the system across time, and also provides information on

how the state of the system transits from one equilibrium to another.

The black line in Fig. 7 represents the time series of housing price deviations from

fundamentals. The black dotted line indicates the baseline 0. All six countries exhibit

long-lasting periods of fluctuations of price deviations around 0. It can be observed that

housing prices have been increasing rapidly since the mid-1990s and have peaked around

2008 in the US and NL. After that they have dropped considerably for those countries. In

JP housing prices peaked earlier, around 1990, and subsequently declined to levels below

the baseline 0. The UK, SE and BE housing markets exhibited peaks around 1990 and

2008, after which housing prices dropped significantly.

The red and blue horizontal lines indicate the estimated equilibria when control param-

eters are constant (Section 5.1), while the scatter plots show the equilibria with interest

rate as control variables. The red lines or scatters represent stable equilibria on the upper

or bottom sheet of cusp equilibrium surface, while the blue lines or scatters imply unstable

equilibria on the middle sheet of cusp equilibrium surface.

Some of the equilibria do not align with the position of the actual data in the plots.

A possible explanation is that our estimates were based on optimizing one-step-ahead

price forecasts, the objective function of which is rather insensitive to the actual long-run

equilibrium. From the trends in the price in the direction of the time-varying equilibria, it

can be observed that the cusp model forecasts the direction of change of the equilibrium in

real housing data well. For instance, in the case of SE around mid-1990s, the equilibrium

presented a transition from a low price equilibrium to a high price equilibrium. Around

the same time, the corresponding housing price data experienced a change from a decline

towards the lower equilibrium into a gradual increase towards the upper equilibrium.

5.2.3 Critical Transitions

Fig. 8 displays time series of price deviations, interest rates and the cube root of Cardan’s

discriminant δ in different countries. Under the monitoring of monetary policy, interest

rates in all countries exhibited long lasting fluctuations regarding different economic sit-

uations. In general, for JP, SE and NL, the interest rates were declining in the observed

period. For the US, UK and BE, interest rates peaked around 1980, followed by persistent
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Figure 8: Time series of state variable (top panels), interest rate (middle panels) and cube

root of Cardan’s discriminant δ (bottom panels) in different countries. The control variable

is the interest rate. The dashed line indicates the baseline of 0.

declines.

Because δ has a very sharply peaked distribution near zero, being based on second and

third powers of α and β, transformation to its cube root allows us to visually catch more
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details on its fluctuations around 0. We are particularly interested in the corresponding

price dynamics when δ crosses the 0 baseline from negative to positive, which implies that

the state of system moves from the multiple equilibria region to the stable region. This

can be observed during most of the housing price bubble and burst cycles in the UK, NL,

SE and BE. When crossing the bifurcation boundary from inside the multiple equilibria

region to outside, a critical transition may occur, driven by the interest rate, where the

system’s state ‘falls’ off the cusp curve and transitions from one equilibrium to another.

Large fluctuations in the price time series can be either shock driven near a single

stable equilibrium or a critical transition. To help interpret observed price changes a direct

comparison of the relative price deviation y with the control variable r is useful. Fig. 9

illustrates how the time series of the control variable – the interest rate, corresponds with

the various stability conditions in the housing market historically. The gray ‘bifurcation

band’ indicates the range of interest rate values with respect to δ < 0, corresponding to the

multiple equilibria region with three equilibria – two stable and one unstable. A critical

transition happens when the state of system crosses the band entirely, and this graph helps

identifying when this happened.

By observing the relationship between interest rates and the multiple equilibria region,

displayed across time in Fig. 9, we are able to study the underlying mechanisms of fluc-

tuations in housing markets. For instance, in the example of SE, the state of the housing

system has fallen into the multiple equilibria region twice between 1990 and 2000. This

corresponds with the bottom of the downturn of the housing price index. After falling

into the multiple equilibria region for the first time, the state of the system quickly came

out of it and went back to the previous stable equilibrium due to a rise of the interest

rate. A year later the interest rate dropped again and the system was brought down to

the multiple equilibria region for the second time. This time, it did not end up in the

previous equilibrium but transitioned to a new stable equilibrium after moving out of the

bifurcation band on the other side. This transition induced the retrieval of the housing

market. Since then, the SE housing price has been continuously increasing. The UK and

BE show similar bifurcation bands in their interest rates and exhibited similar systematic

fluctuations as SE. They had experienced several critical transitions between two equilibria

before the mid-1990s, which were consistent with the fluctuations in real housing price. Af-

ter that, the UK came back to its previous stable equilibrium. This behavior corresponded

with the recovery of housing market in these two countries. In particular, the housing
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Figure 9: Time series of housing price deviations, and interest rate with gray bifurcation

band indicating the region of r-values where there are three equlibria.

system of NL has the widest bifurcation band of all. It has been in the multiple equilibria

region for about a decade between 1973 and 1984, while the corresponding housing price
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was experiencing a bubble and burst cycle. Nevertheless, its equilibrium never went fully

across the bifurcation band. For the US and JP, there is no bifurcation band. According

to our analysis, their housing systems remained in the single equilibrium regime.

To analyze the impact of interest rate on the equilibrium of housing system further,

Fig. 10 presents the bifurcations showing the predicted equilibria as a function of the

interest rate r for the different countries. The red dots represent the stable equilibria on

the upper or bottom sheet of cusp equilibrium surface, and the blue dots represent the

unstable equilibria on the middle cusp sheet. This reveals the underlying bifurcations in

different housing systems. For the UK, SE and BE, the observed bifurcations are two

connected saddle-node bifurcations. With interest rate as a control parameter, the cusp

model exhibits three equilibria for a certain range of interest rate, and a single equilibrium

outside this range. The bifurcation scenario for the example of NL is different, in that it

shows only one bifurcation. For small values of the interest rate there is one quilibrium,

and for larger interest rates than about 7.5% there are three equilibria. Increasing the

interest rate further does not lead to a single equilibrium again, as it does for the UK, SE

and BE. This is related to the fact that the estimated line with possible (α, β)-values for

the Netherlands only crosses the bifurcation border once in the (α, β) plane (see Fig. 6),

while those for UK, SE and BE cross it twice, entering the cusp-shaped multiple equilibria

region on the negative α side and exiting it on the positive α side. For the US and JP, no

bifurcations occurred during the analyzed period.

5.2.4 Policy Implications

Historically housing busts have often been followed by financial crises, which is why housing

booms raise great concerns regarding the instability of housing prices among policy makers.

How can a policy maker stabilize the housing price and prevent market instabilities? As an

essential factor in the monetary policy, the interest rate has been pointed out to have great

influence on the (in)stability of housing markets (Bernanke and Gertler, 1995; Shiller, 2006;

Muellbauer and Murphy, 2008; Taylor, 2007, 2009; Crowe et al., 2013; Shi et al., 2014).

Our study once again sheds light on the importance of interest rates. Moreover, we reveal

the underlying link between interest rate and systematic fluctuations in housing markets.

The dynamics of the housing system shows cusp catastrophe behavior with interest rate as

the control parameter. It exhibits critical transitions between multiple equilibrium states

as a result of the changes of interest rate. It is dangerous when the system is in the
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Figure 10: Bifurcations showing the predicted equilibria as a function of the interest rate

r for the different countries. Red scatter represents the stable equilibrium (up or bottom

sheet). Blue scatter represents the unstable equilibrium (middle sheet)

multiple equilibria region, and gets too close to the cusp curve. Even a small perturbation

could induce a critical transition there. This scenario can be used to explain the majority
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of housing booms and busts in the data, such as in UK 1978, 1980,1990, NL 1978, BE

1987,1990, and the depression of SE after 1990.

A general lesson for policy makers to be drawn from these examples is that the cusp

catastrophe model may yield important insights on policies that can cause global instability

in economics. As we argued in our analysis, policy makers should monitor the instability of

economic systems, and be alert when the system approaches a bifurcation, in particular be

aware of critical transitions which could lead to significant market bubbles or sudden market

collapse. The examples in this paper suggest that interest rate policy plays an important

role in maintaining the stability of the economic system. By performing an appropriate

interest rate policy, policy makers are able to prevent endogenous market crashes. There

is no empirical evidence to show whether a high or a low interest rate should be beneficial

to the economy. Taking the SE housing market as an example, as seen in Fig. 10, if we

move the interest rate upward to values that are too high, i.e. above 9%, the market might

collapse. However, when the interest rate is lowered below 7%, bubbles may arise. Our

method gives us an overall picture about the multiple equilibria of the system and how the

equilibria change with interest rate policy. It could provide policy makers with a reasonable

guide to conduct a proper interest rate policy that keeps the economy in a healthy state.

It could also help to deal with markets with bubbles and to establish post-crisis policy on

the recession following a housing market collapse.

6 Concluding Remarks

In this paper we investigated whether instability of housing markets can be explained

and predicted by catastrophe theory by fitting a stochastic cusp catastrophe model to

empirical housing market data. Using housing price deviations and quarterly data on long

term government interest rates, we estimated the model for six different countries: US,

UK, NL, JP, SE and BE.

Two estimation approaches are discussed – Cobb’s method and Euler discretization.

The analysis shows that Cobb’s Method is more suitable for cross-sectional data, or for

a system for which the state variables change fast compared to the sampling period and

the control parameters. It performs well when modeling the overall stationary density of

state variables. However, when it comes to one-step-ahead forecasting, Euler discretization

gave better predictions. Because moreover our study was based on time series data and
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one of our objective was to study the forecasting ability of cusp catastrophe model, Euler

discretization was employed in the later sections.

We found that the dynamics of the housing market can be explained by cusp catastrophe

behavior. Under constant control parameters, the housing systems of US, UK and NL

appear to be in ‘normal’ single equilibrium regimes and those of SE, JP and BE in multiple

equilibria regimes. Nevertheless, when using interest rate as control variable, the interest

rate changes the stability of the systems; those systems’ equilibria vary with interest rate.

The predicted equilibria give us a country-dependent global picture on the changes of

equilibria as a function of the interest rate. Time series of Cardan’s discriminant δ link the

changes of system equilibria and the booms and busts cycles in empirical data. Moreover,

by observing the relationship between interest rates and bifurcation bands, we are able to

study the underlying mechanisms of fluctuations in housing markets. A critical transition

can be distinguished when the interest rate crosses its bifurcation band entirely, that is,

enters it from one side and exits it on the other.

Our results yield important insights into policies that monitor the instability in housing

markets. A change of the main control parameter, the interest rate, may move the system

closer to the edge of the multiple equilibria region, making critical transitions more likely

to occur. As a control variable, the interest rate plays an important role in keeping the

stability of economic system. Policy makers should prevent the economic system from

moving into the multiple equilibria regions, or, when already there, from getting too close

to the cusp curve that may induce critical transitions. Cusp catastrophe theory could

provide policy makers with a reasonable guidebook on interest rate policy.
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A Cobb’s Method v.s. Euler Discretization

A.1 Parameterizations

Suppose that the deterministic part of the (canonical) variable zt is governed by the po-

tential function

V (z;α, β) = −αz − 1

2
βz2 +

1

4
z4,

and that there is a driving noise term with variance σ2
z per time unit, i.e.

dzt = − ∂V (z;α, β)

∂z

∣∣∣∣
z=zt

dt+ σzdWt.

The stationary density of z then is proportional to (Gibbs distribution)

fZ(z) ∝ exp

[
−2V (z)

σ2
z

]
= exp

[
αz + 1

2
βz2 − 1

4
z4

σ2
z/2

]
,

see e.g. Pavliotis (2014), pp. 109–110.

If y = λ+σz is a scaled and/or translated variable, then z = (y−λ)/σ, and the density

of y is proportional to

fY (y) ∝ exp

[
α
(
y−λ
σ

)
+ 1

2
β
(
y−λ
σ

)2 − 1
4

(
y−λ
σ

)4

σ2
z/2

]
. (16)

Cobb’s approach as implemented in the ‘cusp’ R package The stationary density

as it is fitted by the ‘cusp’ R package implemented by Grasman et al. (2009) has the form

fY (y) = ψ exp

[
α̃

(
y − λ
c

)
+

1

2
β̃

(
y − λ
c

)2

− 1

4

(
y − λ
c

)4
]
. (17)

Comparing the coefficients of the fourth powers in Eqs (16) and (17), we see that these

coincide only if c = σ
(
σ2
z

2

) 1
4
. It can be readily checked that this implies α̃ =

(
σ2
z

2

)− 3
4
α

and β̃ =
(
σ2
z

2

)− 1
2
β.

Euler discretization In terms of yt = λ+ σzt the SDE is given by

1

r
dyt = − ∂V (z;α, β)

∂z

∣∣∣∣
z=

yt−λ
σ

dt+ σzdWt.
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Euler discretization gives

yt+∆t ≈ yt +

(
α + β

(
yt − λ
σ

)
−
(
yt − λ
σ

)3
)
r∆t+ σσz

√
∆tεt+∆t,

where εt+∆t ∼ N(0, 1). Fixing ∆t to the value 1, as we do, our estimation method based

on nonlinear least squares regression fitting the r.h.s. to the observed values on the l.h.s.

provides direct estimates of α, β, λ and σ.

Relations between estimated parameters Although CUSPfit and Euler discretiza-

tion are based on the same underlying SDE, the parameters estimated by the two methods

are not directly comparable. While Euler discretization directly estimates α and β as they

appear in the SDE, the cusp package estimates α̃ and β̃, which are scaled versions of α

and β. Note, however, that the sign of δ is invariant under this transformation of scale,

since δ̃ ≡ 27α̃2 − 4β̃2 = 27
(
σ2
z

2

)− 3
2
α2 − 4

(
σ2
z

2

)− 3
2
β3 =

(
σ2
z

2

)− 3
2
δ.

A.2 Residuals

This section provides graphs of the residuals for Cobb’s approach (Fig. 11) and Euler

discretization (Fig. 12)
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Figure 11: Time series of residuals obtained with Cobb’s method.
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Figure 12: Time series of residuals obtained with Euler discretization.

B Fundamental Price and Price Deviations

This section provides graphs of the housing price level, the estimated fundamental price,

and the relative housing price deviation from the fundamental price, as a function of time

(Fig. 13).
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Figure 1: House price indices (top sub-panels, solid lines, 1970Q1=100), estimated fundamen-
tal real house prices (left, dashed lines) and corresponding relative over-valuation Xt (bottom
sub-panels).

The switching between the two types of beliefs is based on the recent past performance of

the strategies, measured in terms of realised profits, ⇡h,t�1, as in Brock and Hommes (1997,

1998). We derive the realised profits ⇡h,t�1 at time t � 1 along the lines of Boswijk et al.
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Figure 1: House price indices (top sub-panels, solid lines, 1970Q1=100), estimated fundamen-
tal real house prices (left, dashed lines) and corresponding relative over-valuation Xt (bottom
sub-panels).

The switching between the two types of beliefs is based on the recent past performance of

the strategies, measured in terms of realised profits, ⇡h,t�1, as in Brock and Hommes (1997,

1998). We derive the realised profits ⇡h,t�1 at time t � 1 along the lines of Boswijk et al.
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Figure 13: Housing price indices (left, solid lines, 1970Q1=100), estimated fundamental

real housing prices (left, dashed lines) and corresponding price deviations Xt (right).
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