Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Characterising gross plastic deformation in design by analysis

Li, H. and Mackenzie, D. (2005) Characterising gross plastic deformation in design by analysis. International Journal of Pressure Vessels and Piping, 82 (10). pp. 777-786. ISSN 0308-0161

[img]
Preview
PDF (strathprints005692.pdf)
strathprints005692.pdf

Download (257kB) | Preview
[img]
Preview
PDF
Mackenzie_D_Characterising_gross_plastic_deformation_in_design_by_analysis_Oct_2005.pdf - Final Published Version

Download (311kB) | Preview

Abstract

An investigation of three simple structures is conducted to identify and characterise the condition of gross plastic deformation in pressure vessel design by analysis. Limit analysis and bilinear hardening plastic analysis is performed for three simple example problems. It is found that previously proposed plastic criteria do not fully represent the effect of the hardening material model on the development of the plastic failure mechanism. A new criterion of plastic collapse based on the curvature of the load–plastic work history is therefore proposed. This is referred to as the Plastic Work Curvature or PWC criterion. It is shown that salient points of curvature correspond to critical stages in the physical evolution of the gross plastic deformation mechanism. The PWC criterion accounts for the effect of the bilinear hardening model on the development of the plastic mechanism and gives an enhanced plastic load when compared to the limit load.