
Power Analysis of Local
Transmission Technologies

Darshana Thomas
University of Strathclyde
Department of Electronic
& Electrical Engineering

Glasgow, United Kingdom
Email: darshana.thomas@strath.ac.uk

Ross McPherson
University of Strathclyde
Department of Electronic
& Electrical Engineering

Glasgow, United Kingdom
Email: ekb12174@uni.strath.ac.uk

James Irvine
University of Strathclyde
Department of Electronic
& Electrical Engineering

Glasgow, United Kingdom
Email: j.m.irvine@strath.ac.uk

Abstract—With the number of Internet of Things (IoT) devices
expected to explode to over 20 Billion devices by 2020, it is
vital that efficient communication technologies are used. While
ideally a single technology would emerge to simplify deployment,
in practice the varying power and bandwidth requirements of
different devices has led to an industry split over communication
technologies, and while a number of new technologies have been
designed with IoT in mind, commercial imperatives have meant
that existing wireless protocols, in particular Wi-Fi and 433 MHz
AM, remain the most prevelent. This article outlines the power
usage of these two most common protocols, and considers power
aspects of using each protocol in an IoT setting with experiments
carried out with real world devices used in current products.

I. INTRODUCTION

The ever decreasing cost of silicon has made it possible
to have tiny computers monitor more and more aspects of
our lives, this can be seen with such devices as Fitbit. A
tiny computer positioned in a wrist band that has the sole
purpose of helping us monitor our fitness. This could not
have even been imagined 20 years ago, due to the cost and
size of computers [1]. The opportunities offered by increasing
access to data means that we are likely to have ever more
sensors detecting our movement, vitals and habits. However,
while the computing power of these sensors becomes easier
and cheaper to provide, the issue remains of getting this sensor
data back to a platform [2] that the user can easily access. This
is the most energy demanding part of the system, an important
consideration for portable devices which must rely on battery
power.

This constraint has meant that a number of low power
wireless technologies have been developed for wireless sensors
and IoT. Bluetooth Low Energy (BLE) – Bluetooth Smart –
is an enhanced version of Bluetooth which is designed for
low power operation. Zigbee was designed from the start to
be energy efficient. A low power extension of Wi-Fi, IEEE
802.11ah – Wi-Fi HaLow – is being standardised. However,
this latter technology is not yet deployed. Zigbee is deployed,
but has little installed base. BLE has been adopted by many
smart phones, but has little installed base in the home, which
is where many of these devices will be installed. This leaves
companies which wish to deploy products now with a dilemma
– while many promising technologies are on the horizon, the
current choice of wireless interface is much more limited.

The first wireless radio technology widely used for remote
devices in the home is 433MHz. Named for the frequency
band it is transmitted in, this is a very simple control pro-
tocol transmitting a command to a device by sending the
serial number of the device followed by the command. 433
has extremely limited hardware requirements – an oscillator,
sequence generator and antenna – and the resulting low cost
has made it very popular. One of the most popular uses
is for remote control power sockets, but a wide variety of
other sensors, such as smoke alarms, door sensors, occupancy
sensors, etc, are available with 433 transmission.

The other home wireless technology currently deployed
is Wi-Fi. The method of choice for communicating with
broadband routers, and supported by all tablets and smart
phones, Wi-Fi is ubiquitous and capable of supporting IoT
devices. Unfortunately, Wi-Fi is very power hungry, which
holds it back in the IoT market.

From the consumer’s point of view, two important areas
of consideration for IoT devices are energy efficiency and
cost. While Wi-Fi has until recently been significantly more
expensive than 433 modules, new very low cost Wi-Fi modules
are becoming available which makes Wi-Fi cost effective in
an IoT scenario. This paper therefore examines the remaining
factor – power consumption. The idea behind reducing power
usage of IoT sensors and transmitters is, if the device can rely
on its own batteries and be able to last a reasonable amount of
time then the barrier of having to be near a power source would
be removed, allowing greater flexibility and uptake. Previous
research has looked into the power consumption aspect of
wireless technologies designed for IoT [3],[4], but little is
available on real world power consumption of 433, or of
current Wi-Fi in an IoT scenario. This paper looks into this
aspect with experiments carried out initially with the 433MHz
AM protocol and with a developed prototype which has Wi-Fi
capability.

A. 433 MHz AM

433 MHz is commonly used for local area communication,
as frequencies within this band are internationally reserved
for short range non-specific applications. This means many
manufacturers produce and sell these components, and this,
along with the inherent simplicity of the design, mean that
a wireless interface can be added to an existing device very978-1-5090-0493-5/16/$31.00 2016 IEEE

cheaply. Examples of some of these products are remote
controls, garage door fobs and smart LED lights.

Devices are available in AM and FM varieties, of which
AM is the more common. Other frequencies, such as 868MHz,
are also used. Transmission is extremely simple – on-off
keying of a fixed pattern, and devices are usually designed so
that they can go into a learning mode and pair by recognising
a specific pattern from 433 protocol. This was first used for
devices and later all the other technologies were evolved from
this concept. An advantage of using 433 for low powered
sensors is that the device can be configured so that it doesn’t
have to join a network before transmitting content, since the
receiver is always listening. Having to connect to a network
involves keeping the transceiver circuitry powered for longer.
The disadvantage is that there is no confirmation of receipt
(messages are usually repeated to increase reliability), although
in many cases sensors have very limited storage and would not
be able to do anything if a message was not acknowledged
anyway. But systems like this rely heavily on having a base
station or alternative receiver. 433 is short range, but again
this is not a particularly significant disadvantage, as it limits
interference with neighbouring properties.

It should be noted that there is very little security offered
with 433. The simplistic nature of the protocol means that
it is very easy to listen to communications and to spoof a
transmitter, so anyone within the range of the 433 receivers
would have the capability to manipulate them. However, such
an attack requires physical proximity, and it could be argued
that it is no greater threat than physical vandalism.

B. Wi-Fi

Wi-Fi has been a phenomenal success with the vast major-
ity of households having a Wi-Fi network [5]. This prominence
would make Wi-Fi the ideal candidate for a sensor device since
all the infrastructure is already in place. System on chip (SoC)
devices have been rapidly expanding in popularity, particularly
within the areas of mobile electronics and embedded systems.
Mainly due to their reduced power consumption achieved
through tightly coupled integration between the CPU, RAM
and other components, which would normally be separate
chips. One of these SoC devices is the ESP8266 made by
Expressif which integrates an Xtensa lx106 processor, RAM,
standard interfaces with a Wi-Fi chipset. Providing a low
cost device capable of running small programs with network
capability.

Two devices which use the ESP8266 [6] chip are the
ESP-01 [7], and the ESP-03. These share most of the same
functionality, the ESP-03 offers more GPIO pins for interaction
with other systems, it is also surface mount package. Where
the ESP-01 has pin connectors to allow it to connect to a bread-
board. Both packages are able to run both standard C code,
Lua and most recently Python [8] [9] [10]. When transmitting
data using a low power embedded system, it is best to transmit
as little data as possible to save time and therefore power. This
can be achieved by shortening the message, but a much easier
change would be removing any unnecessary data such as a full
HTTP packet [11]. For this reason, protocols which would use
a very limited set of resources were designed. Two of these
protocols are the Constrained Application Protocol (CoAP)

[12] and Message Queuing Telemetry Transport (MQTT) [13].
CoAP is based on the popular Representational State Transfer
(REST) model. It allows payloads of any data type, manages to
only use a 4 Byte header, (about 13% the size of a comparable
HTTP header.) MQTT is similarly lightweight, but is designed
with a Machine to Machine network in mind: for example,
communication between multiple temperature sensors and a
central heating unit. CoAP is for single direct communication,
usually between a user and a device.

Wi-Fi has the advantage that with having a full IP stack on
the sensor and a Wi-Fi access point in the home, sensors can
be designed to access a server outside the home over IP and
therefore only the sensor has to be provided – the receiving
infrastructure is already present. This contrasts with 433 where
a receiver is necessary. Wi-Fi devices have to connect to the
network before being able to transmit. This takes time and
energy. One way to reduce this is to use a static IP address
rather than relying on DHCP to allocate one. However, this
comes at additional complexity for the user.

II. EXPERIMENT

A. 433 MHz AM

In order to get realistic results from a 433 device using
an AM transmitter, it was required to create a device on a
PCB board. An ATmega328P chip was programmed to output
pulses on a digital GPIO pin. This pin was then connected to
the data input on the AM transmitter, along with all appropriate
power connections. Two 22 µF were also placed in series
with a 16 MHz crystal to provide an external clock for the
ATmega328P. Finally the reset pin was set high and connected
to Vcc via a 10 kΩ resistor. The pulses generated by the
ATMega were preconfigured to match a signal copied from
another transmitter, which would toggle a wall power socket,
with a 15 second delay between on and off. A PortaPow power
monitor was inserted between the input power supply of the
created system, and a power generator. The power monitor was
therefore able to measure the current, voltage and power used
by the system. The system was turned on, with the transmitter
being in line of sight of the power socket. The current values
used by the device were then recorded every third of a second
as this was the limitation of the PortaPow resolution. These
values are shown in Figure 1. During the experiment there
were noticeable increases in the current draw moments before
the wall socket would switch state, confirming the device was
operating correctly and as expected.

Taking the average of the values, gives 21.1 mA while the
device is transmitting, and an average of 15.9 mA while in idle
mode. Since the device would spend most of its life in idle
mode, the idle current had to be dramatically reduced. Turning
off all unnecessary parts of the chip and putting it into a deep
sleep mode, caused the power usage to drop to 360 µA.

B. Wi-Fi

To properly test the ESP-01’s Wi-Fi capabilities it was
decided to test both the C and Lua implementations of both
lightweight protocols CoAP and MQTT. The experimental
setup was consistent for each test, where the ESP-01 would
be flashed and then powered via the PortaPow power monitor.
The values were then recorded at third of a second intervals.

0 0.2 0.4 0.6 0.8 1 1.2

·105

0

5

10

15

20
Transmitting

Idle Mode

Time [ms]

C
ur

re
nt

[m
A

]

Fig. 1. Current Analysis of 433 MHz Transmitter Circuit

The ESP8266 supports 4 sleep modes: none-sleep/idle,
light-sleep, modem-sleep and deep-sleep. When attempting
to measure the current consumption in deep-sleep mode, the
PortaPow recorded the result as zero. Instead it was measured
with other means explained later. The values of current draw
in the rest of these modes was recorded. It was considered
to be useful to measure the current usage when transmitting.
These values for each implementation are shown in Table I.
All values are in milliamps.

TABLE I. CURRENT CONSUMPTION OF COMMON MODES IN EACH
IMPLEMENTATION.

Mode Lua C
MQTT CoAP MQTT CoAP

Transmitting 48.7 48.3 41.6 39.2
No Sleep 65.9 64.3 17.6 17.3

Light Sleep 17.4 17.5 5.3 5.4
Modem Sleep 17.9 18.1 6.1 5.5

This shows that during transmission all methods were
roughly similar, but substantial changes can be seen between
the Lua and C implementations for the rest of the operating
modes. The slight changes in transmission power usage can be
explained due to Lua running a virtual machine and using an
interpreter rather than the precompiled machine code created
by the C implementations. This will cause the code to run
faster on the processor and therefore use less power. The
dramatic changes between the power usage of the sleep modes
is harder to explain, multiple tests resulting in the same values
pointed to an issue. Since the sleep modes also use roughly the
same amount of power as the normal none-sleep/idle mode in
the C implementations, it is possible there is an issue within the
framework. Between the C implementations the results were
roughly the same, with the CoAP versions using slightly less
power. The main cause of this is most likely to be that the
MQTT messages use TCP which has to set up a connection
before transmitting, where UDP is used in CoAP, which is able
to instantly send. Since the C CoAP version used the least
power, it was further developed. A graph of the life cycle of
a series of transmissions is shown in Figure 2

To attempt to save further power the possibility of using

0 50 100 150 200
0

15

30

45

60

75

Transmitting

Idle
Mode

Device powering on

Time [ms]

C
ur

re
nt

[m
A

]

Fig. 2. Current Analysis of ESP-01 CoAP C Implementation

an additional external low powered micro controller was in-
troduced. This would give the functionality to toggle the state
of the ESP8266 device using the CH PD pin. This results in
the ESP only using 0.5 µA when CH PD is low. The device
would then be powered on using an interrupt provided by an
ATmega328P.

The ATmega was configured to output pulses consisting
of high for 6000 ms - was found to be the smallest amount
of time the device could successfully deliver a message to a
server. Then low for 1000 ms to allow the device to power off.
Simulating an environment where it would transmit and then
go back to sleep.

The ESP-01 was flashed with C code to automatically
connect to a saved network, then emit a CoAP PUT request to
the server. The devices were both powered, and the PortaPow
was configured to measure the energy use (mWh) over 100
cycles. The resulting value was then divided by 100 to give
the power required for one transmission. This resulted in a
value of 4.43383 mWh per transmission.

Knowing that using a static IP address would reduce the
transmission time, the system was changed from using DHCP
to allocate an IP address to using a static IP address. This
meant the device was only powered for the length of the high
pulse of 2500 ms. Running the experiment again using a static
IP, resulted in a value of 4.38383 mWh per transmission.
A comparison of these results with the DHCP is shown in
Figure 3.

III. DISCUSSION AND CONCLUSION

Doing the previous tests showed the absolute values of each
stage – transmission, idle, and sleep. However the results don’t
take into account the power used during transition between
stages. To gain an understanding for the power used when
waking the device up, to calculate the energy used per hour
relative to the number of transmissions, graph was modified to
show the differences between the ESP-01 and the 433 energy
usage. This is shown in Figure 4.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Transmissions per hour

E
ne

rg
y

[m
W

h]
Static
DHCP

Fig. 3. Energy Analysis of ESP-01 Static Vs DHCP

100 101 102
0

2

4

6

8

10

12

Cross Over at 27
Transmissions per
hour

Transmissions per hour

E
ne

rg
y

[m
W

h]

ATMega ESP-01
ATMega 433MHz

Fig. 4. Energy Comparison of the Number of Transmissions Per Hour

Based on the Figure 4 the results for both 433 and
ESP-01 running with the ATmega processor, illustrates the
fact that ESP-01 is capable of transmitting with less energy
consumption. Up to 27 transmissions could be carried out by
ESP-01 per hour. This has the benefit in a real world scenario,
as the majority of sensing applications require less frequent
transmission. This means that implementing ESP-01 as a IoT
sensor device provides greater efficiency, with the additional
benefits of reliability and security.

Although the ESP-01 uses more power than the 433 con-
figuration while transmitting, because the Wi-Fi SOC device
uses significantly less energy during idle mode, the overall
energy usage for the ESP-01 is lower. This is clearly shown
by the cross over point in the graph shown in Figure 4. This
shows that for estimated use of less than 27 transmissions per
hour, the ESP-01 would be more efficient, while for use greater
than that the ESP-01 becomes exponentially less efficient.
Additionally the ability to implement security onto a Wi-Fi
platform is a huge bonus, since security is becoming a rapidly

increasing issue. Even though the power usage of constant
transmission with these Wi-Fi chips are greater, with the
implementation of Wi-Fi disconnected and appropriate delay,
power consumption is reduced. To this can be added the bonus
of having an Internet compatible platform with the full IP stack
of the ESP-01 (although security has to be considered), making
even current Wi-Fi a practical choice for IoT applications.

The control microcontroller in our Wi-Fi sensor was the
ATmega. While this is relatively efficient in sleep mode, it
does not compare to the very low sleep currents offered by,
for example, the Texas Instruments MSP430 range [14], which
is capable of current drains of less than 500nA in standby
mode (and less than 1000nA even when having a Real Time
Clock active). While this difference in sleep current will have
little effect on sensors which transmit several times a minute,
for sensors which transmit only every few hours or even days
it will make a significant difference, and so this lower cost
design should be used in these applications. Our group is
currently constructing such a sensor using an MSP430G2553
microcontroller instead of the ATmega.

REFERENCES

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of
things: A survey. Comput. Netw., 54(15):2787–2805, October 2010.

[2] C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georgakopou-
los. Dynamic configuration of sensors using mobile sensor hub in
internet of things paradigm. In Intelligent Sensors, Sensor Networks and
Information Processing, 2013 IEEE Eighth International Conference on,
pages 473–478, April 2013.

[3] A. Dementyev, S. Hodges, S. Taylor, and J. Smith. Power consumption
analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic
sleep scenario. In Wireless Symposium (IWS), 2013 IEEE International,
pages 1–4, April 2013.

[4] M. D. Prieto, B. Martinez, M. Montn, I. V. Guillen, X. V. Guillen, and
J. A. Moreno. Balancing power consumption in iot devices by using
variable packet size. In Complex, Intelligent and Software Intensive
Systems (CISIS), 2014 Eighth International Conference on, pages 170–
176, July 2014.

[5] Ofcom. The Communications Market 2015.
[6] ESP8266. http://espressif.com/en/products/hardware/esp8266ex/overview.
[7] ESP-01. http://esp8266.co.uk/modules/esp-01/. [Online; accessed 10-

March-2016].
[8] NodeMCU. https://github.com/nodemcu/nodemcu-firmware. [Online;

accessed 10-March-2016].
[9] C Expressif API. http://bbs.espressif.com/viewtopic.php?f=46&t=1703.

[Online; accessed 10-March-2016].
[10] micropython. https://github.com/micropython/micropython/tree/master/

esp8266. [Online; accessed 10-March-2016].
[11] Tapio Levä, Oleksiy Mazhelis, and Henna Suomi. Comparing the cost-

efficiency of coap and http in web of things applications.
[12] Constrained Application Protocol for Internet of Things.

http://www.cse.wustl.edu/ jain/cse574-14/ftp/coap.pdf. [Online;
accessed 17-March-2016].

[13] MQTT For Sensor Networks (MQTT-SN) Protocol Specification. [On-
line; accessed 17-March-2016].

[14] MSP430x1xx Family. http://www.ti.com/lit/ug/slau049f/slau049f.pdf.
[Online; accessed 17-March-2016].

