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Abstract 25 

Objectives Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) 26 

combined with trehalose 6,6-dibehenate (TDB) elicit strong cell mediated and 27 

antibody immune responses; DDA facilitates antigen adsorption and presentation, 28 

whilst TDB potentiates the immune response. To further investigate the role of DDA, 29 

DDA was replaced with the neutral lipid of distearoyl-sn-glycero-3-phosphocholine 30 

(DSPC) over a series of concentrations and these systems investigated as adjuvants 31 

for the delivery of Ag85B–ESAT-6-Rv2660c, a multistage tuberculosis vaccine.  32 

Methods Liposomal were prepared at a 5:1 DDA-TDB weight ratio and DDA content 33 

incrementally replaced with DSPC. The physicochemical characteristics were 34 

assessed (vesicle size, zeta potential and antigen loading) and the ability of these 35 

systems to act as adjuvants was considered.  36 

Key findings As DDA was replaced with DSPC within the liposomal formulation, the 37 

cationic nature of the vesicles decreases as does electrostatically binding of the 38 

anionic H56 antigen; however, only when DDA was completed replaced with DSPC 39 

did vesicle size increase significantly. Th1 type cell-mediated immune responses 40 

reduced. This reduction in responses was attributed to the replacement of DDA with 41 

DSPC rather than the reduction in DDA dose concentration within the formulation. 42 

 43 

Conclusion These results suggest Th1 responses can be controlled by tailoring the 44 

DDA/DSPC ratio within the liposomal adjuvant system. 45 

46 
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Introduction       47 

The development of novel vaccines against pathogens like tuberculosis and HIV, 48 

where a strong CMI response is required, has been hampered by the lack of suitable 49 

adjuvants. Producing an adjuvant capable of eliciting strong Th1 type responses 50 

remains a key challenge. However in recent years, research has resulted in a number 51 

of potential lead candidates, including liposome systems. Liposomes as adjuvants 52 

have been investigated in a range preclinical models and have been shown to 53 

effectively deliver associated vaccine antigen to antigen presenting cells (APCs), 54 

providing antigen specific immunity [1]. Previous studies suggest that cationic 55 

liposomes are more locally reactive than neutral liposomes, causing deposition of 56 

antigen and infiltration of monocytes to the site of injection [2], whilst also producing 57 

high local levels of pro-inflammatory cytokines [3]. The choice of the cationic lipid 58 

also plays an important role, influencing the immunostimulatory capacity of the 59 

system. Indeed liposomal adjuvants based on the synthetic amphiphile 60 

dimethyldioctadecylammonium bromide (DDA), have been found to generate 61 

stronger Th1 responses compared to other cationic systems, characterised by their 62 

levels of interferon-γ (IFN-γ) production [4]. Furthermore, the combination of DDA 63 

with the synthetic analogue to mycobacterial cord-factor, trehalose dibehenate (TDB), 64 

can enhance Th1 responses [5]. The incorporation of the TDB glycolipids has been 65 

shown to stabilise DDA vesicles and enhance the CMI response of DDA whilst at the 66 

same time inducing high levels of antigen specific antibodies [6]. The TDB glycolipid 67 

has been shown to activate macrophages and dendritic cells (DCs) through the FcRγ-68 

Syk-Card9 pathway, stimulating an innate immune activation program which 69 

mediates protective Th1 and Th17 type responses [7]. The cationic charge of DDA-70 

TDB results in higher antigen retention and an enhanced infiltration of monocytes at 71 

the site of injection compared to neutrally charged counterparts [8] and whilst the 72 

surface charge is recognised as a crucial factor driving cellular immunity [8], its 73 

adjuvant effect appears to be less influenced by liposomal size [9].  74 

 75 

Although DDA-TDB is a well characterised vaccine delivery system, key 76 

characteristics that dictate the adjuvant properties of the liposomes are still not fully 77 

understood. To further develop this, in this study, cationic DDA content was gradually 78 

replaced with an alternative non-cationic lipid, the neutral lipid distearoyl-sn-glycero-79 

3-phosphocholine (DSPC), in order to further consider the role of DDA within DDA-80 

TDB in modulating Th1 response profiles. DSPC was selected to replace DDA due to 81 
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the similarity in alkyl chain lengths and phase transition temperature to that of DDA, 82 

factors shown to impact on liposome stability in vivo [10]. Therefore a range of 83 

formulations where DSPC systematically replaced DDA within the liposomal system 84 

were investigated in combination with the subunit TB vaccine candidate, H56 [11].  85 

 86 

 87 

Materials and Methods 88 

Materials 89 

Dimethyldioctadecylammonium (DDA), trehalose 6,6-dibehenate (TDB) and 1,2-90 

distearoyl-sn-glycero-3-phosphocholine (DSPC) were purchased from Avanti Polar 91 

Lipids (Alabaster, Alabama, USA). The purity of all the compounds used was > 99%, 92 

determined by HPLC. The fusion protein Ag85B-ESAT-6-Rv2660c (H56 antigen) 93 

obtained from the Statens Serum Institut (SSI, Copenhagen, Denmark). Tris (Ultra 94 

Pure) was purchased from ICN Biomedicals (Aurora, OH). Phosphate buffered saline 95 

(PBS) tablets were purchased from Sigma-Aldrich Co. Ltd. (Dorset, UK). Methanol 96 

and chloroform (extra pure) were purchased from Fisher (UK). Ultima Gold 97 

scintillation fluid and [3H] thymidine were obtained from Perkin Elmer (Waltham, 98 

MA). Double distilled water was used in preparation of all solutions. 99 

 100 

Liposome preparation: lipid hydration 101 

Liposome formulations were prepared by the previously established method of lipid 102 

hydration [12]. Briefly, lipids were dissolved in a chloroform:methanol mixture (9:1 103 

v/v), with DDA and TDB set to concentrations of 1.25 mg and 0.25 mg TDB per mL 104 

respectively, representing a 5:1 DDA-TDB weight ratio. The level of DDA within the 105 

formulation was incrementally replaced with increasing levels of DSPC, with levels 106 

of TDB remaining fixed. Lipid mixtures were added to a round bottomed flask and 107 

upon solvent extraction via rotary evaporation and N2 flushing, a dry film was 108 

produced. The lipid film was hydrated in Tris-buffer (10 mM, pH 7.4) for 20 min at 109 

10 °C above the main gel-to-liquid phase transition of DDA at ~47 °C [7, 13] or 110 

DSPC at ~55 °C [14] to completely hydrate the film and form liposomes. 111 

 112 

Characterisation of liposomes for particle size and zeta potential 113 

 114 
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The intensity mean diameter of all liposome formulations were measured using a 115 

Malvern Zetasizer Nano-ZS (Malvern Instruments, Worcs., UK) via dynamic light 116 

scattering. The measurement of vesicle size took place at 25 ˚C in Tris buffer (1/10 117 

dilution; 1 mM, pH 7.4). The indirect measurement of liposome surface charge was 118 

determined by assessing the zeta potential, using the same Malvern Zetasizer Nano-119 

ZS instrument, in Tris buffer (1/300 dilution; 1 mM, pH 7.4). All characterisation was 120 

undertaken in triplicate. 121 

 122 

Radiolabelling of H56 antigen 123 

The protein antigen, H56 was radiolabelled with 125I using IODOGEN® pre-coated 124 

iodination tubes (Pierce Biotechnology, Rockford, IL). Separation of labelled protein 125 

from free 125I was carried out using a Sephadex G-75 gel column, pre-soaked in 126 

ddH20 and equilibrated with Tris buffer (10 mM; pH 7.4). This method was then 127 

carried out as described previously [2]. 128 

 129 

Quantification of H56 antigen adsorption  130 

Radiolabelled (125I) H56 antigen was added to each liposome formulation at an in vivo 131 

concentration of 5 µg per dose (0.1 mg/ml), and left to surface adsorb to the liposome 132 

for 45 minutes with intermittent swirling. Surface-adsorbed and non-adsorbed protein 133 

antigen within the liposomal suspensions were separated by diluting the suspension to 134 

1 ml using Tris buffer (10 mM; pH 7.4), followed by centrifugation using an Optima 135 

Max-XP Ultracentrifuge (Beckman-Coulter Inc., Fullerton, CA). The quantity of 136 

radiolabelled antigen (125I-H56) prior to centrifugation and within subsequent 137 

fractions (pellet and supernatant) was measured using a Cobra™ CPM Auto-138 

Gamma® counter (Packard Instruments Company Inc., Downers Grove, IL). The 139 

total recovery of protein antigen was then determined by calculating the % 140 

radioactivity in the liposome pellet fraction. 141 

 142 

Vaccine study: Immunisation of mice 143 

All experiments were undertaken in accordance with the 1986 Scientific Procedures 144 

Act (UK). Female C57BL/6 mice, 6-8 weeks old (Charles River, UK) were split into 145 

11 groups of 5. Vaccine preparations were made with the liposomes adsorbing H56) 146 

antigen to a final concentration of 0.1 mg/mL (5 µg/vaccine dose). All mice, with the 147 

exception of the naive group, were immunised intramuscularly with the proposed 148 
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vaccine (0.05 mL/dose) three times, with two week intervals between each 149 

immunisation. At scheduled time points, blood samples were taken and stored at -20 150 

°C for future analysis.  151 

 152 

Upon experiment termination, mice were culled and the spleens were collected. 153 

Spleen cell suspensions were produced upon light grinding through a fine wire mesh 154 

into 10 ml RPMI 1640 cell culture medium (W/O Glutamine) supplemented with 10% 155 

(v/v) FBS and 1% (v/v) PSG (BioSera, East Sussex, UK). Cell suspensions were 156 

centrifuged at 1000 RPM for 10 min at 15 °C and upon supernatant removal, the 157 

pellet was resuspended in 10 mL RPMI, before repeated centrifugation prior to pellet 158 

resuspension in 5 mL RPMI. Single cell suspensions were used to evaluate splenocyte 159 

proliferation and antigen specific cytokine responses. For assessment of splenocyte 160 

proliferation, H56 was added to sterile 96 well cell culture plates (Greiner Bio-One 161 

Ltd, Gloucestershire, UK) with a positive control of concanavalin A (2 µg/mL). 100 162 

µL of spleen cell suspensions were added and incubated at 37 °C, 5% CO2, and upon 163 

72 hours incubation, 40 µL of [3H] thymidine at 0.5 (µCi) in supplemented RPMI was 164 

added per well and incubated for 24 hours. Well contents were harvested onto quartz 165 

filter mats (Skatron/Molecular Devices, Berkshire, UK) using a cell harvester 166 

(Titertek Instruments, Alabama, USA) and transferred to 20 mL scintillation vials 167 

(Sarstedt, Leciester, UK) containing 5 mL scintillation cocktail (Ultima Gold, 168 

PerkinElmer, Cambridgeshire, UK). Incorporation of [3H] thymidine in cultured cells 169 

was measured with a scintillation counter according to standard operating procedures. 170 

 171 

Evaluation of H56 specific antibody isotypes 172 

Serum samples were assessed for levels of IgG1 and IgG2b antibodies by the enzyme-173 

linked immunosorbent assay (ELISA). The ELISA plates (96 well, flat bottomed, high 174 

binding, Greiner Bio-One Ltd, Gloucestershire, UK) were firstly coated with 3 µg/mL 175 

H56 antigen prior to overnight incubation at 4 °C. All plates were washed three times 176 

with PBST wash buffer (40 g NaCI, 1 g KCI, 1 g KH2PO4, 7.2 g Na2HPO4, (2H20) per 177 

5 litres of ddH20, incorporating ~0.4 mL of Tween 20) using a using a plate washer 178 

(Microplate washer, MTX Lab Systems, INC., Virginia, USA) with subsequent 179 

blotting to remove unbound antigen. Plates were blocked by coating each well with 180 

100 µL of Marvel in PBS (dried skimmed milk powder, 4% W/V, Premier Foods, 181 

Hertfordshire, UK) and incubated for one hour at 37 °C before washing three times 182 

with PBST buffer. 140 µL of serum sample was serially diluted in PBS (70 µL 183 
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sequentially), added to the washed ELISA plates and incubated for one hour at 37 °C. 184 

Known positive serum and pooled naïve mice sera were used as positive and negative 185 

controls respectively. Plates were washed five times with PBST buffer before the 186 

addition of 60 µL/well of horseradish peroxidise (HRP) conjugated anti-mouse 187 

isotype specific immunoglobulins of IgG1 and IgG2b (AbD serotec, Oxfordshire, 188 

UK), to identify anti-H56 antibodies. Plates were washed a further five times with 189 

PBST buffer before adding 60 µL/well substrate solution (colouring agent: 6x 10 mg 190 

tablets of 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS; Sigma, 191 

Dorset, UK) in citrate buffer (0.92g Citric Acid + 1.956g NA2 HPO4 per 100 ml) 192 

incorporating 10 µL of hydrogen peroxide (30% H2O2/100 ml) and incubation for 30 193 

min at 37 °C. Absorbance was read at 405 nm using a microplate reader (Bio-Rad 194 

Laboratories, model 680, Hertfordshire, UK).  195 

 196 

Quantification of cytokines via the sandwich ELISA 197 

Isolation of splenocyte cell suspensions and plating onto 96 well cell culture plates 198 

was conducted as summarised in section 2.6.1. The cells were subsequently incubated 199 

for 48 hours at 37 °C, prior to supernatant removal and storage at -70 °C for future 200 

analysis. Quantification of the cytokines, IL-2, IL-5, IL-10 and IFN-γ within cell 201 

culture supernatants took place using each specific DuoSet ELISA development kit 202 

(R&D Systems, Oxfordshire, UK). The plates were firstly coated with 100 µL capture 203 

antibody per well and incubated at room temperature overnight. The plates were then 204 

washed three times with PBST buffer before blocking and incubation at room 205 

temperature for one hour before washing a further three times. 100 µL/well of 206 

samples/standards was then added to each well and incubated for two hours at room 207 

temperature. The plates were washed three times before adding 100 µL of cytokine 208 

specific detection antibody per well and incubating for two hours at room 209 

temperature, prior to washing three times and adding 100 µL of streptavidin-210 

horseradish peroxidise (HRP) per well (diluted 1/200). The plates were then covered 211 

to avoid exposure to direct light and incubated at room temperature for 20 min. After 212 

three washes, 100 µL of substrate solution was added per well (1:1 mixture of colour 213 

reagent A and B: stabilised hydrogen peroxide and stabilised tetramethylbenzidine 214 

(TMB) respectively) and the plates were covered and incubated at room temperature 215 

for 20 min. The experimental reaction was stopped by adding 50 µL stop solution (2N 216 

H2SO4) per well and the optical density was then determined using a microplate 217 

reader at 450 nm (Bio-Rad Laboratories, model 680, Hertfordshire, UK). 218 
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 219 

Statistical analysis 220 

Data was tested by one-way analysis of variance (ANOVA) followed by the Tukey 221 

test in order to compare the mean values of different groups. Differences were 222 

considered to be statistically significant at p < 0.05. 223 

 224 

Results  225 

DDA presence within the liposomal system provides a cationic zeta potential for 226 

adsorption of H56 antigen 227 

In order to investigate the role of the cationic DDA component in the DDA:TDB 228 

liposomal adjuvant system previously shown to be an effective adjuvant [e.g. 2, 229 

15,16], DDA was gradually replaced with DSPC (also previously been used in a range 230 

of vaccine formulations [e.g. 17, 18]) whilst the amount of TDB remained fixed 231 

within the formulation. These vesicles were then mixed with H56 antigen (0.1 mg/ml) 232 

and their size, zeta potential and antigen loading measured (Figure 1).  The 233 

DDA/TDB vesicles were 650 – 750 nm in size, with a highly cationic zeta potential 234 

(~70 mV) which promoted strong antigen loading efficiency (~85 %, 0.1 mg/ml; 235 

Figure 1). As DDA was replaced with DSPC within the formulation, the cationic 236 

nature of the vesicles decreases which subsequently reduces their ability to 237 

electrostatically bind the anionic H56 antigen (from 84% down to 15% when DDA is 238 

replaced with DSPC; Figure 1). However, in terms of vesicle size, it was only when 239 

DDA was completed replaced with DSPC that vesicle size significantly (p < 0.001) 240 

increased (~ 1.4 µm; Figure 1). 241 

 242 

An increased cationic DDA content generates a Th1-skewed antibody profile  243 

Given the differences in the formulations shown in figure 1, we further investigated 244 

the impact of DDA concentration on the ability of these systems to act as adjuvants. 245 

Female C57BL/6 mice in groups of 5 were immunised with the various 246 

liposome/antigen formulations (outlined in Figure 1) and mice received a 5 µg antigen 247 

dose intramuscularly three times, with two week intervals between each 248 

immunisation. Figure 2 shows IgG1 and IgG2b responses (as reciprocal end point 249 

serum dilution) over the period of the study. By day 24, all formulations produced 250 

significantly (p<0.05) higher IgG1 antibody responses compared to responses in mice 251 

immunised with free antigen (Figure 2); however, there was no significant difference 252 
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between the IgG1 responses stimulated by the various liposome formulations. In 253 

contrast, for IgG2b responses, only mice immunised with the formulations containing 254 

250 or 150 µg DDA/dose gave significantly higher immune responses that those mice 255 

immunised with free antigen (Figure 2). This would suggest the higher level of DDA 256 

within the formulation potentiates a stronger Th1-type antibody profile. 257 

 258 

Spleen cell proliferation levels increased with increased DDA concentration  259 

To further consider the impact of DDA/DSPC content in liposomal adjuvants,   260 

antigen specific spleen cell proliferation upon re-stimulation with H56 antigen at the 261 

concentrations of 0, 0.05, 0.5, 5 and 25 µg/mL. From the formulations tested there 262 

was a general DDA dose dependent trend, with DDA-TDB (250/50 µg/dose) inducing 263 

the peak of proliferation, indicated by elevated levels of [3H]Thymidine (Figure 3) 264 

with significantly (p < 0.05) higher splenocyte proliferation, upon re-stimulation with 265 

H56 antigen at 0.05-25 µg/ml, compared to the other formulations with lower DDA 266 

contents (Figure 3).  267 

 268 

Cell mediated immune responses correlate DDA concentration with Th1 responses 269 

T-cells harvested upon vaccination were tested for their ability to generate a range of 270 

cytokines after restimulation with H56. It is understood that cellular immunity and 271 

especially a Th1 response is vital to mediate protection against intracellular pathogens 272 

such as MTB. IFN-γ is the prime indicator of a Th1 type effector response [19] 273 

whereas IL-2 is generated by Th1 central memory cells and essential to T-cell 274 

proliferation [20]. Interleukins 5 and 10 are associated with Th2 type responses with 275 

IL-5 stimulating growth and differentiation of B cells and enhancing immunoglobulin 276 

secretion, whilst IL-10 down-regulates the expression of Th1 cytokines. 277 

 278 

In terms of IFN-γ production, again there is a trend of increasing IFN-γ production 279 

with increasing DDA (and reducing DSPC) content within the liposome formulation 280 

with DDA-TDB (250/50 µg) stimulated the highest levels (Fig. 4A). Indeed complete 281 

replacement of DDA with DSPC resulted in IFN-γ levels in line with the naive and 282 

non-adjuvanted H56 vaccine groups (data not shown). A similar DDA dose dependent 283 

effect was observed for the quantified levels of IL-2 (Fig. 4B), suggesting that 284 

increasing levels of DDA promotes a stronger Th1 bias response. For IL-5 and IL-10 285 

production (Fig 4C and 4D respectively), a reversal of this trend is seen with higher 286 
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levels of DSPC (and reducing levels of DDA) promoting higher IL-5 and IL-10 287 

production suggesting the Th2 bias responses increase as the Th1 responses decrease. 288 

 289 

These outcomes correlate with the antibody isotypes trends of reducing DDA content 290 

within the liposomal formulations reducing the Th1 IgG2b responses (Figure 2).  291 

Indeed, the well-defined Th1-skewed antibody profile observed for DDA-TDB, 292 

previously shown to be most effective in a 5:1 weight ratio [6], has been associated 293 

with a strong Th1response [15]. More specifically, DDA is believed to promote 294 

accelerated antigen uptake by antigen presenting cells [21], whilst TDB enables a pro-295 

inflammatory response to obtain a Th1 cytokine imprint [15].  296 

 297 

Addition of DSPC to cationic liposomes reduces Th1 responses 298 

To consider if these changes in adjuvant performance were a result of the replacement 299 

of DDA with DSPC, or a result of reducing DDA concentration within the 300 

formulation alone, an additional vaccine formulation was considered where the DDA 301 

content was reduced to 100 µg/dose but no DSPC was added to the formulation 302 

(therefore DDA:DSPC:TDB 100/150/50 µg vs. 100/0/50 µg /dose; Table 1). In terms 303 

of physico-chemical attributes, the vesicles were comparable in size and zeta potential 304 

(Table 1). Similarly in terms of immune response profiles, IgG1 and IgG2b responses 305 

were not significantly different over the period of the study yet spleen cell 306 

proliferation levels were significantly higher (approximately 2 fold higher) for the 307 

formulation without the addition of DSPC (Table 1). In terms of the cytokine profile 308 

promoted by the liposomal adjuvants, the addition of DSPC to the DDA:TDB 309 

formulation make no significant different to IL-5 and IL-10 responses; however, the 310 

addition of DSPC within the formulation significantly (p<0.05) reduced IFN-γ and IL-311 

2 responses (Table 1). This would suggest that at equivalent DDA concentrations, the 312 

inclusion of DSPC within the liposomal adjuvant formulation reduces the Th1 types 313 

responses. 314 

 315 

Discussion 316 

The mechanism of DDA:TDB has been investigated and through a range of studies; 317 

the key attributes of the system has been identified as the combination of  the ability 318 

to co-deliver antigen and immunomodulators to antigen presenting cells (which may 319 

result from these systems forming a depot at the injection site), and the ability for the 320 

system to stimulate these antigen presenting cells [22]. Physicochemical factors that 321 
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control and promote these attributes include the cationic nature of the vesicles and the 322 

rigidity of the liposomal bilayer with vesicle size playing a less important role [23]. 323 

Indeed recent studies suggest that these physicochemical characteristics are key in 324 

controlling the ability of the liposomes to promote the formation of an 325 

adjuvant/antigen depot at the injection site, and that Th1 responses may be supported 326 

by depot formation whilst Th2 responses are not reliant on a vaccine depot, as is the 327 

case with Alum [25-26]. Indeed recent studies by Kamath et al. [22] have shown that 328 

synchronisation of dendritic cell activation and antigen exposure is required for the 329 

induction of Th1/ Th17 responses. By comparing responses from mice immunised 330 

with antigen adsorbed to DDA/TDB with mice immunised with antigen and 331 

DDA/TDB separately (but at the same site), the authors were able to show that both 332 

immunisation strategies produced the same weak Th2 immune responses. However, 333 

injection of vaccine and antigen separately, but to the same site, produced weaker Th1 334 

responses than immunisation with DDA/TDB with adsorbed antigen [25]; by injecting 335 

of antigen and adjuvant separately, early production of an Antigen+/Adjuvant- 336 

dendritic cell (DC) population with a non-activated phenotype was promoted [22]. 337 

Furthermore the authors were able to demonstrate that such DCs could recruit 338 

Antigen-specific T cells and trigger their initial proliferation, but this interfered with 339 

Th1 induction in a dose dependent manner [27]. 340 

 341 

To consider the controlling role of charge in the above attributes of DDA:TDB, 342 

previous studies [8] have considered the impact of complete replacement of DDA 343 

with DSPC and demonstrated that cationic nature of the liposomes, induced by the 344 

DDA content, promotes prolonged antigen presentation and inducing Th1 type 345 

responses, and replacing DDA with DSPC removed the depot-forming action of the 346 

vesicles and reduced Th1 responses. To this end, within this study we have explored 347 

the impact of varying the ratio of cationic DDA to the ‘neutral’ DSPC lipid in 348 

liposomal adjuvant formulations on Th1 control. Within this study we show a 349 

concentration DDA/DSPC dependent Th1 immune response profile. Furthermore it 350 

was shown that replacement of DDA with DSPC, rather than a reduction in DDA 351 

content alone, was the controlling factor. This may be due to the DDA/DSPC 352 

formulations offering reduced loading/retention of the antigen after administration, 353 

resulting in loss of antigen and therefore loss of antigen/adjuvant synchronisation of 354 

DC targeting, shown as a critical factor in determining Th1 responses [27]. 355 

 356 
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Conclusion 357 

This present study demonstrates the that Th1 responses generated from a liposomal 358 

DDA adjuvant system are dose controlled with the ratio of the cationic lipid DDA, to 359 

the ‘neutral’ DSPC lipid impacting on the Th1 responses. With the exception of full 360 

DDA replacement with DSPC, the physicochemical findings demonstrated no major 361 

differences in terms of particle size, but a general decrease in zeta potential as DDA 362 

content reduced was noted. This change in cationic nature was also linked to the 363 

immune response profile, with immune responses being modulated by the DDA to 364 

DSPC ratio adopted for the proposed adjuvants. However given that replacement of 365 

DDA with DSPC within the formulation had more of an impact on immunological 366 

responses that merely reducing the DDA content alone, this would suggest that 367 

consideration of the overall lipid content compared to DDA content within a 368 

liposomal construct is an important parameter to consider. 369 

 370 
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 458 
Table 1: Comparison of formulations of DDA/TDB (100/50 µg) with and without 459 
DSPC. 460 
 461 

 462 
Results represent mean ± SD for n=3 for liposome characterisation and n=5 for in 463 
vivo responses. For further details on antibody responses, spleen cell proliferation and 464 
cytokine levels see Figures 2, 3 and 4 respectively. 465 

466 

 

 

DDA/DSPC/TDB  

Factor 100/150/50 µg 100/0/50 µg Significance 

z-average diameter (nm) 626 ± 46 693 ± 64 n/s 

Zeta potential (mV) 46 ± 5 48 ± 6 n/s 

IgG1 (serial end point dilution, log10) 

Day 24 

Day 37 

Day 49 

 

4.30 ± 0.00 

4.60 ± 0.30 

4.54 ± 0.25 

 

4.36 ± 0.70 

4.78 ± 0.16 

4.54 ± 0.39 

 

n/s 

n/s 

n/s 

 

IgG2b (serial end point dilution, log10) 

Day 24 

Day 37 

Day 49 

 

3.70 ± 0.30 

4.12 ± 0.45 

4.06 ± 0.39 

 

3.82 ± 0.33 

4.54 ± 0.33 

4.42 ± 0.45 

 

n/s 

n/s 

n/s 

Spleen cell proliferation (counts/CPM) 11416 ± 8441 28149 ± 6672 P < 0.05 

IFN-γ (pg/mL) 1454 ± 474 2789 ± 662 P < 0.05 

IL-2 (pg/mL) 1491 ± 509 2887 ± 585 P < 0.05 

IL-5 (pg/mL) 301 ± 68 289 ± 60 n/s 

IL-10 (pg/mL) 129 ± 29 125 ± 36 n/s 
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Figures. 467 
 468 

469 
Figure 1. Physico-chemical characteristics of liposomes prepared with varying ratios 470 

of DDA and DSPC combined with TDB. A) TEM and visual images of liposomes 471 

prepared. B) Vesicle size, polydispersity and zeta potential together with C) H56 472 

antigen loading. Vesicles were prepared via lipid hydration in Tris buffer (10 mM, pH 473 

7.4), with systems surface adsorbed with 0.1 mg/ml H56 antigen and measured in 1 474 

mM Tris buffer. Results represent the mean average ± standard deviation (n=3). 475 

 476 
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477 
Figure 2. H56 specific antibody titres generated by DDA-TDB and its cationic 478 

replacement with DSPC for IgG1 and IgG2b. Values represent µg/dose, with sera 479 

collected before the first immunisation and on days 9, 24, 37 and 49 thereafter, and 480 

analysised for anti-H56 antibodies by ELISA. Results signify the reciprocal end point 481 

dilution (log10) compared with untreated control sera (n=5 ± SD). Significance is 482 

illustrated as p<0.05 increase compared to H56 vaccination group. 483 

 484 
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485 
Figure 3. Spleen cell proliferation in response to stimulation/re-stimulation with H56 486 

antigen upon replacement of cationic content within DDA-TDB. Formulation values 487 

represent µg/dose, with DDA-TDB and DSPC-TDB set to a 5:1 weight ratio 488 

(DDA/DSPC/TDB at 250/0/50 and 0/250/50 µg/dose respectively). H56 antigen 489 

specific splenocyte proliferation was indicated by the level of [3H]Thymidine 490 

incorporation into cultured splenocytes at antigen concentrations of 0-25 µg/ml. ConA 491 

was used as a positive control at 2µg/mL with all counts in the region of 100,000 492 

CPM. The results displayed denote the mean average for each group with associated 493 

standard error at n=5. Significance is illustrated between the liposomal vaccination 494 

groups, and comparisons shown against one another are upon re-stimulation with H56 495 

vaccine antigen at 25 µg/mL. 496 

 497 
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498 
Figure 4. IFN-γ, IL-2, -5, and -10 cytokine production from splenocytes (A–D) 499 

derived from mice immunised with H56 combined with DDA/DSPC/TDB liposomes. 500 

Mice received 3 injections with 2-week intervals; splenocytes were obtained 3 weeks 501 

post the final immunisation. Splenocytes were restimulated for 48 h in the presence of 502 

H56 (5 µg/ml). Cytokines were measured from splenocyte using sandwich ELISAs. 503 


