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ABSTRACT
Over the years a number of models have been introduced as
solutions to the central IR problem of ranking documents
given textual queries. Here we define another new model. It
is a probabilistic model and has no term inter-dependencies,
thus allowing calculation from inverted indices. It is based
upon a simple core hypothesis, directly calculating a ranking
score in terms of probability theory. Early results show that
its performance is credible, even in the absence of parame-
ters or heuristics. Its semantic basis gives absolute results,
allowing different rankings to be compared with each other.
The investigation of this model is at a very early stage; here,
we simply propose the model for further investigation.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

Keywords
information retrieval, ranking, probabilistic retrieval, Jensen-
Shannon Divergence

1. INTRODUCTION
An idealised Information Retrieval (IR) system should,

given all the information available, rank documents in de-
scending order of their expected relevance to an information
need, usually expressed as a short keyword-based query [8].

In this work, we introduce a new ranking model, the
Uniform Probability Model (UPM). In common with many
other models, it assumes term independence, representing
documents as so-called “bags of words”, and is based on the
notion of probabilistic unigram document generators [5].

Good empirical performance does not usually come di-
rectly from a well-motivated and parsimonious model, but
rather from a number of heuristic modifications to such a
model. The most successful models – e.g. BM25, the Lan-
guage Model (LM) and TF/IDF – all use a combination

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICTIR ’13 September 29 - October 02 2013, Copenhagen, Denmark
Copyright 2013 ACM 978-1-4503-2107-5/13/09 ...$15.00
http://dx.doi.org/10.1145/2499178.2499185.

of common heuristics, such as Inverse Document Frequency
(IDF) weighting, document length normalisation, and term
smoothing, and have parameters that must be individually
tuned for each collection in order to perform well.

As defined here, in the absence of any parameters or heuris-
tics, initial results show the performance of UPM to be com-
parable with much more sophisticated ranking functions.
More complex models, specifically adapted to the ad hoc
ranking problem or other IR tasks, can presumably be de-
rived from the foundations of UPM; we propose UPM as a
worthy foundation for further investigation.

2. RELATED WORK
The problem of ranking documents from a large collec-

tion, given a short textual query, has been long studied and
is at the core of the IR field. Unigram IR systems regard
each document (and the queries) as a set of distinct tokens,
representing each unique term in the collection, where each
token may have a count associated with it or merely a note
of its presence or absence; the pragmatic value of such sys-
tems is that they can be evaluated using an inverted index,
essential for fast results over huge collections.

The essence of such systems is a scoring or ranking func-
tion, which operates over tuples of values representing some
aspect of the keys terms’ presence in each document. An
overview of methods using this model is given in [9].

Within this context, the most notable probabilistic models
are the Binary Independence Model (BIM) and the Query
Likelihood Model (LM). BIM, whilst theoretically sound,
performs poorly on standard IR test collections unless large
numbers of explicit relevance judgements are available to
train upon. LM also has a principled basis, and estimates the
probability of a query being relevant to a document, rather
than vice versa. LM works well with adjunct smoothing
functions, notably Dirichlet.

UPM approaches the problem of document ranking in a
similar manner to that of the Divergence From Randomness
model [1], an extension of Harter’s 2-Possion model in which
it is also assumed that there are a set of “elite” terms. Term
weights are proportional to the divergence of the frequency
of a term in a given document and its frequency over the
entire collection, this divergence is determined by choosing
a suitable underlying model from a number of available op-
tions. While it is possible to define a parameter-free version
of this model, in order to obtain competitive levels of per-
formance it is necessary to apply a number of parameterised
normalisation steps.



3. THE MODEL
The model is defined in the context of unigram generative

models, based upon a notion of probabilistic generation of
documents. We assume an invariant mapping from terms in
a corpus to dimensions in the vector space, and all vectors
are transformed into probability vectors.
P(t|v) denotes the probability assigned to term t in vector

v, and
P

t P(t|v) = 1 for all vectors we consider. Vectors are
used to model a number of different entities, including: the
corpus, a document within the corpus, and term-generation
oracles.

We define a term generator Gv, driven by probability vec-
tor v, such that Gv randomly returns a term t with prob-
ability P(t|v). A document of length n can be notionally
generated by making n successive calls to Gv and normalis-
ing the result into a new probability vector.

3.1 Probability Estimation
Consider a distance function Dist, bounded in [0, 1], over

probability vectors. We will consider the value 1−Dist(d, v)
to represent an estimate of the probability that generator
Gv was used to produce document d. This will allow us to
compare a document against different generators, in order
to find the one most likely to have generated it.

Consider a notional set of null documents, within the con-
text of a corpus C, which are not relevant to any particu-
lar subject. We hypothesise that the terms of such doc-
uments are most likely to be drawn from the terms of the
language with probabilities in proportion to the distribution
over C; that is, as the length of document d increases, then
Dist(d,C)→ 0.

We will use GC as a baseline for comparing actual doc-
uments drawn from the corpus. Notice that, if dn is a
randomly selected null document and d1 is generated from
any other Gv, then Dist(d1,C) is likely to be greater than
Dist(dn,C).

3.2 Documents and Key Terms
Now consider documents which are relevant to a given

set of key terms k1 to kn. We hypothesise only that the
frequency with which these terms appear within each such
document is likely to be greater than the frequency with
which the same term appears within the corpus.

The number of occurrences of these terms is most likely
to increase as a single additive value over and above its fre-
quency within the corpus: for example, a document about
red aardvarks may well have extra instances of that phrase,
but a significantly long document is still likely to have the
terms in other contexts as well. As a consequence, although
a less obvious effect, all other terms in the document will
have a decreased frequency.

These observations allow us to construct a model genera-
tor GvK for documents about a subject characterised by a set
of key terms K. The vector vK created to drive the generator
is given by:

P(t|vK) =

(
P(t|C) + ε if t ∈ {K}
ε · P(t|C) otherwise

where ε is a constant used to represent an increase in each
probability deriving from the extra occurrences of each key
term, and ε simply rebalances the probabilities of the non-
key terms so that all probabilities sum to one.

Note that ε is not an adjustable parameter. As we are in-
terested only in comparisons of Dist(d,C) and Dist(d, vK),
the correct notional value for ε is infinitesimal, to minimise
Dist(C, vK). An analogy in two dimensions would be to
model whether P = (x, y) lies above the X-axis by compar-
ing Dist(P, (0, 0)) with Dist(P, (0, ε)) - the smaller the value
of ε, the more correct the model.

3.3 Relative Probability Ranking
If the distance we are considering gives a good estimate

of generation probability, it is clear that the inequality

Dist(d, vK) < Dist(d,C)

is more likely to be true than false for documents gener-
ated from GvK ; whereas, if document d is about a different
subject, then the same calculation is more likely to be false.

As a corollary, we can consider the function

RK(d) = Dist(d,C)−Dist(d, vK)

as a ranking function for documents d over the key terms K.

3.4 Non-key terms and noise
We make one simplification to the document model, to

remove noise from the document collection: for all terms
in each document which are not stated as key terms in a
search, we assume that the term frequency is in ratio with
the corpus term frequency. This assumption is made in other
probabilistic models, such as the BIM model [10]. Thus,
we consider document vectors which maintain their term
frequencies for terms in the query, but otherwise effectively
lose all other information. For document d and set of key
terms K, we denote the version with noise removed as dK.

The ranking function RK for the set of key terms K is now:

RK(d) = Dist(dK,C)−Dist(dK, vK) (1)

All that remains is to find a suitable distance function, ide-
ally one that can be efficiently calculated from only the doc-
ument term frequencies of the given search terms. For this
we use Jensen-Shannon divergence.

4. EVALUATION OF JENSEN-SHANNON
Jensen-Shannon (JS) is the name given in [4] to a diver-

gence function identified in [7]. In essence it is a smoothed,
symmetrised version of the Küllback-Leibler divergence [3].
More recent analysis e.g. [2] has shown important seman-
tic properties, and it is being increasingly investigated. We
believe this is its first application to IR ranking.

JS is defined in terms of Küllback-Leibler divergence:

JS(v, w) = 1
2
KL(v,m) + 1

2
KL(w,m)

where m is the vector mean of v and w. If logs are taken to
base two, then the outcome is bounded in [ 0,1].

Some simple algebra gives two other forms of interest for
the same function:

JS(v, w) = H(m)− 1
2
H(v)− 1

2
H(w) (2)

where H is Shannon’s entropy function; and, from this:

JS(v, w) = 1
2

X
i

F(vi, wi)

for a kernel function F defined by

F(x, y) = h(x+ y)− h(x)− h(y)



where h(x) = −x log2(x).
An important property of F in our context is that, when

summing over terms which are in ratio, then a single eval-
uation over the sum of the terms gives the same outcome:
that is, if a

b
= c

d
, then F(a, b) + F(c, d) = F(a+ c, b+ d).

The importance of this property is that, as they are all in
the same ratio, all of the residual (non-key) terms in both
C and dK

i can be treated as a single term in the calculation,
by summing their values in both vectors. The value of this
sum is given by 1 −

P
t∈K P(t|v), meaning that only the

values of P(t|v) where t ∈ K need to be accessed during
the distance calculation. This is the property that allows
calculation of the apparently complex distances using only
the terms available from an inverted index.

We now return to the task of calculating the ranking func-
tion (Equation 1). The distance between dK and C is:X

t∈K
F(P(t|dK),P(t|C)) + F(1−

X
t∈K
P(t|dK), 1−

X
t∈K
P(t|C))

and the distance between dK
i and vK is:X

t∈K
F(P(t|dK),P(t|vK)) + F(1−

X
t∈K
P(t|dK), 1−

X
t∈K
P(t|vK))

and therefore our ranking function is the difference between
these terms.

Finally, it can be noted that the difference between the
final terms of these distances, i.e. the non-key terms, is con-
stant for any given set of keywords, and does not therefore
affect the order of results for a given query. This allows the
ranking to be simplified to:

R(d,K) =
X
t∈K

F(P(t|dK),P(t|C))−F(P(t|dK),P(t|vK))

For each term in the query, we therefore require only the
term frequency in the corpus, from which the term frequency
in the notional subject generator is calculated, and the term
frequency in the document.

If an absolute value is required, to allow comparison of
results among different queries, then the residual constants
can be calculated at little extra cost.

5. EVALUATION

5.1 Method
Performance evaluation was carried out using the Terrier

IR platform [6], and its implementations of: TF/IDF with
Robertson’s TF (TFIDF), BM25, and LM with Bayesian
smoothing and Dirichlet prior (DirLM). We used default pa-
rameters for each of the models found in the literature, which
are quite well optimised for TREC experimentation; BM25
k1 = 1.2, k2 = 8, b = 0.75; Robertson TF/IDF k1 = 1.2,
b = 0.75; Dirichlet LM µ = 2500.

We used the Text Research Collection Volumes 4 & 5 from
the Text REtrieval Conference (TREC), with topics 301-400
from TREC-6 and TREC-7. Each topic provides three fields.
A title, a description, and a narrative; we ran short queries
(where only the title was used) and long queries (where all
three fields were used).

5.2 Results

Trec 6-7 Trec 6-7 Long

Metric mAP mRR nDCG mAP mRR nDCG

UPM 0.280 0.575 0.603 0.219 0.626 0.560

BM25 0.292 0.603 0.621 0.237 0.677 0.587
DirLM 0.275 0.543 0.597 0.196 0.536 0.543
TFIDF 0.294 0.604 0.623 0.232 0.672 0.582

Table 1: mAP, mRR and nDCG values for TREC

Figure 1: Precision/recall, short queries, Trec6-7

Table 1 shows the performance of all of the models for
both short and long queries. We give three standard met-
rics: mean average precision (mAP), mean reciprocal rank
(mRR), and mean normalised discounted cumulative gain
(nDCG) over the first 1,000 documents returned for each
query. Figures 1 and 2 give the corresponding precision/recall
charts for the first 20 results returned over short and long
queries respectively; after this point, there is increasingly
little discernible difference among the models.

An easy observation is that UPM outperforms DirichetLM,
and is outperformed by the other functions. However over
a single collection and a relatively small set of queries this
is not a statistically valid observation; furthermore, in prac-
tice, there would be little to choose among these models
given the absolute values reported. However the purpose of
these measurements, in this context, is only to show that the
performance of the initial form of UPM, before the develop-
ment of any appropriate heuristics or parameters, is entirely
credible even in competition with functions which have been
highly refined from their original, conceptual definitions.

We also performed tests using some others of the more ac-
cessible collections, including the WT10G and Blogs06. The
relative performance was similar, but UPM fared relatively
less well with the shorter documents in these collections.



Figure 2: Precision/recall, long queries, Trec6-7

6. CONCLUSIONS AND FUTURE WORK
In this work we have described a new retrieval model,

UPM, based on a probabilistic semantics. We have shown
that the pure model, in the absence of further refinement,
has performance comparable to three highly competitive
baselines, all of which have significant heuristic refinements
over their conceptual definitions. However we regard this
work as being at a very early stage of development, with
much investigation remaining to be performed.

The performance of the unrefined UPM model is stronger
for long queries and long documents. This is not surprising:
the semantics upon which the model is defined rely upon
documents being represented by probability vectors. When
documents are very long, then dividing a term count by the
document length does represent a reasonable approximation
of probability; however for shorter documents, the confi-
dence with which this probability may be assigned is much
lower. This is of course the basis of applying smoothing tech-
niques [11] over the core semantics of the language model;
we have not yet tried this approach with UPM and would ex-
pect to see a significant improvement especially with shorter
documents.

It is interesting to compare the underlying hypothesis of
the UPM model with the LM model; the former is based
on the probability of query terms occurring within different
documents, while the latter is based directly on the proba-
bility of a query being relevant to a document. This would
imply directly that UPM may be a better model over longer
documents and queries, and that the LM may be better over
shorter documents and queries. Our results so far support
this, and it would be interesting to test UPM in the context
of tasks such as patent retrieval, where the queries are often
entire documents.

Although shown here as a ranking function, absolute val-
ues can also be calculated, allowing the relevance of different
query results to be compared with each other. If relevance
values are absolute then they can be used to weight terms in

candidate documents for purposes such as Pseudo Relevance
Feedback.

Finally, looking at the mathematics beyond the intuition,
our method effectively constructs a Voronoi hyperplane be-
tween C and vK and then awards the highest scores to those
points which are closest aligned with a perpendicular through
vK, not taking distance from the plane into account. This is
significantly at odds with most other models, where greater
distances would give greater ranking scores, and closer in-
spection of the particular documents retrieved and not re-
trieved in comparison with other models may allow useful
refinement.
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