Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Thermoplastic materials aging under various stresses

Zhao, Weijia and Siew, Wah Hoon and Given, Martin J and Li, Qingmin and He, Jinliang and Corr, Edward (2016) Thermoplastic materials aging under various stresses. In: 2016 IEEE Electrical Insulation Conference (EIC). IEEE, [Piscataway, NJ], pp. 615-618. ISBN 978-1-4673-8706-4

Text (Zhao-etal-IEEE-EIC-2016-Thermoplastic-materials-aging-under-various)
Zhao_etal_IEEE_EIC_2016_Thermoplastic_materials_aging_under_various.pdf - Accepted Author Manuscript

Download (519kB) | Preview


The most popular cable insulation material used is XLPE due to its excellent electrical and thermal properties. However, it does not lend itself to ease of recycling. As a result of an increase in concern worldwide regarding environmental protection, it is the objective of this work to investigate whether a thermoplastic material could be used to replace XLPE for cable insulation. Among thermoplastic materials, HDPE is regarded as one with the most similar properties as XLPE. Although it is clear that the performance of polymeric material changes with different stresses, especially polymer nanocomposites aging process under AC electric field stresses, there are also not many publications on how a superimposed AC voltage would affect the insulation’s performance in HVDC power systems. This paper reports the dielectric properties of HDPE under thermo-electrical stresses. DC stress with and without a superimposed AC stress were applied in the experiments undertaken. The degradation of materials with change in frequencies are summarized and discussed.