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SUMMARY

The paper presents a framework to solve the regularised 20 moment equations consisting of a set of
transport-like governing equations, the required constitutive closure, re-casting of the equations in
second-order partial derivative form and derivation of additional wall boundary conditions. Couette
flow results reveal that good agreement occurs between the 20 moment equations and direct simulation
Monte Carlo data.
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1. INTRODUCTION

The viable manufacture of miniaturised devices, on the order of microns or sub-microns, has
been made possible through recent technological developments. However, these advances have
not been matched by an improved fundamental understanding of the rich multiphysics occuring
in micro-electro-mechanical systems (MEMS) [1]. In particular, microscale gas flows provide
a lot of challenges in terms of predicting correctly and efficiently many of the observed non-
equilibrium phenomena.

Non-equilibrium effects occur when the mean free path, λ, is similar to the characteristic
length of the flow domain e.g. channel height, H . The Knudsen number, Kn = λ/H , is a
dimensionless parameter characterising non-equilibrium effects in gas flows identifiying various
regimes [2]. For 0.1 < Kn < 10, the flow is in the transition regime, and the Navier-Stokes-
Fourier (NSF) equations are no longer considered to be valid due to the onset of various non-
equilibrium effects. Alternative approaches are needed to model flows in this regime by means
of either discrete methods or extended continuum modelling. Discrete methods such as direct
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simulation Monte Carlo (DSMC) provide a stochastic solution to the nonlinear Boltzmann
equation but are known to be computationally intensive, especially for the low speed flows
typically encountered in MEMS [3].

The method of moments, developed by Grad [4], replaces the Boltzmann equation with
a hierarchy of partial differential equations (PDEs) particularly providing closure for 13
equations (G13) where on top of the conservation equations of mass, momentum and energy
additional balance laws for viscous stress and heat flux were derived. Torrilhon and Struchtrup
[5] and Struchtrup [6, 7] provided a different closure through regularisation of Grad’s equations
(R13), which provide better resolution of non-equilibrium phenomena and are proven to be
stable both in space and time. Gu and Emerson [8] cast the equations in a second-order
PDE form and provide Maxwellian type wall boundary conditions (WBCs) [9]. Noticeable
improvements over the classical NSF solutions were observed. The present study follows a
similar strategy using a regularised 20-moment (R20) equation set which is derived together
with the constitutive closure. Subsequently the equations are re-cast in a second-order PDE
form and additional WBCs are provided.

2. REGULARISED 20 MOMENT EQUATIONS

The conservation equations for mass, momentum and energy in terms of position, xi, and time,
t, are given by,
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where δij is the Kronecker delta, ρ is the density, vi is the flow velocity, p = ρθ is the pressure
and θ = RT is the specific energy related to the specific gas constant, R, and temperature, T .
D/Dt is the material derivative and repeated indices indicate a tensor contraction. Relations
for viscous stress, τij , and heat flux, qi, are required in order to close the above 5-moment
equation set. The governing equations for τij and qi derived by Grad [4] are written here
together with an additional transport equation for mijk, where for Maxwell molecules,
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where Rij , ∆, mijk and φijkl are higher-order moments and the angular brackets<> represent
the traceless part of a tensor. Regularisation for the first five moments yields the NSF equations,
as indicated by the single underlined terms in Equations (4) and (5). A similar regularisation
procedure on a 13-moment set would yield constitutive expressions similar to those derived by
Torrilhon and Struchtrup [5] where
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From Equations (4 – 6), it can be shown that a closure relationship is required for Rij , ∆ and
φijkl , indicated by the double-underlined terms. Equations (8) and (9) are used to provide
closure relationships for Rij and ∆, whereas mijk will be solved in its full transport form
requiring a closure for φijkl . Using a generic moment framework, regularisation [7] and a
production term for Maxwell molecules [10], it can be shown that
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In the present paper, Equation (10) is used to close Equation (6).

3. NUMERICAL PROCEDURE

Equations (1 – 5) can be re-cast in conservative form to yield similar expressions to those
proposed by Gu and Emerson [8]. Using a similar procedure, Equation (6) is re-cast in
conservative form where the convective, diffusive and source terms are identified by solving
mijk as a specific deviation from mijk

R13, where ρcijk = mijk −mijk
R13. After some algebraic

manipulation, with recursive use of tensor identities and substituting Equations (7) and
mijk = ρcijk +mijk

R13 in Equations (6) and (10), it can be shown that
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where
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Round brackets around subscripts (ijkl) in Equation (12) indicate symmetrised tensors and
the subscript, s, indicates symmetrised gradients. In this form, additional WBCs for cijk are
required through arguments on mijk.

4. MAXWELLIAN WALL BOUNDARY CONDITIONS FOR mijk

Wall boundary conditions for vi, T , τij and qi, suitable for a 13-moment set, were
derived by Gu and Emerson [8] using a Grad 35 moment distribution function and a
Maxwellian scattering kernel at the wall. The Maxwellian kernel is applicable to odd
moments with respect to the normal velocity to the wall, C2, so that the half flux
integrals remain valid in the limit of a vanishing accommodation coefficient, α [4].
Thus the additional moments considered for a 20 moment case in two dimensions are
ψ =

(
C2C1C1C1C2, C1C1C2C2C2, C1C1C1C2C2C2, C2C2C2C2C2

)
, where C1 is the peculiar

velocity of molecules parallel to the wall. This moment set will yield the new additional WBCs,
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and v1s is the slip velocity and θw = RTw is the wall specific energy.
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Figure 1. Couette flow results for Kn = 0.25; Profiles for (a) tangential velocity, (b) temperature, (c)
shear stress, (d) heat fluxes, (e) m111, m122 and (f) φ1112, φ1222.
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5. RESULTS

Figure 1 compares Couette flow results for the proposed R20 equations against DSMC data
and the results by Gu and Emerson [8] for Kn = 0.25 and a Mach number of 0.32. Argon was
used as a model gas for a plate seperation of 0.048 m at a total pressure of 0.532 Pa with the
wall temperatures set at Tw = 273 K. No empirical corrections were imposed on the WBCs
both on those derived by Gu and Emerson [8] and the additional conditions derived in this
study.

6. DISCUSSION AND CONCLUSIONS

From Figures 1 (a), (c) and (e) it can be seen that the spurious behaviour close to the wall
boundary, reported for the R13 equations [8], is significantly attenuated when using an R20
formulation. Non-equilibrium effects are most siginificant in the Knudsen layer, a kinetic
boundary layer occuring in close proximity to solid walls. This might indicate that larger
moment sets improve the physical description of rarefied gas flows by making use of an extended
approximation of the distribution function. The additional equations solved in combination
with the newly derived boundary conditions are strongly coupled with the stress equation
and contribute better to the diffusive process for stress, hence improving the agreement with
DSMC. However, from Figure 1 (b), it is evident that the temperature profile is not so well
resolved since an R13 closure is used for the heat flux equation, even though the temperature
variation is minimal. Resolving these closure terms in their full transport form, by making use
of a regularised 26 moment equation set, should improve the prediction of the temperature
profile.
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