Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Hybrid MMC based multi-terminal DC/DC converter with minimized FBSMs ratio considering DC fault isolation

Suo, Zhiwen and Li, Gengyin and Xu, Lie and Li, Rui and Wang, Weisheng and Chi, Yongning (2016) Hybrid MMC based multi-terminal DC/DC converter with minimized FBSMs ratio considering DC fault isolation. IET Renewable Power Generation. ISSN 1752-1416

Text (Suo-etal-IETRPG2016-Hybrid-MMC-based-multi-terminal-DC-DC-converter)
Suo_etal_IETRPG2016_Hybrid_MMC_based_multi_terminal_DC_DC_converter.pdf - Accepted Author Manuscript

Download (666kB) | Preview


An isolated high-power multi-terminal DC/DC converter is studied in this paper, based on hybrid MMC configuration consisting of full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs). To decrease the investment and power losses, a reduced arm FBSMs ratio (less than 0.5) scheme is adopted. A detailed analysis on the relationship of the DC/DC converter inner AC voltage and the arm FBSMs ratio under reduced DC voltage is presented. Based on this, a control strategy during DC fault is proposed which continues operating the converter connected to the faulty DC side with reactive current absorption. Under the same arm FBSMs ratio, compared to the conventional strategy of blocking the faulty side converter during a DC fault, the proposed unblocking method with reactive current injection can not only achieve greater DC fault current declining rate, but also ensure maximum power transfer between the interconnected healthy DC grids by maintaining a higher inner AC voltage in the DC/DC converter. The two strategies are compared and validated by simulations using PSCAD/EMTDC under different arm FBSMs ratio.