Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases

Ruseckas, Julius and Juzelinas, Gediminas and Ohberg, Patrik and Barnett, Stephen M. (2007) Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases. Physical Review A, 76 (5). ISSN 1094-1622

[img]
Preview
PDF (strathprints005675.pdf)
strathprints005675.pdf

Download (182kB) | Preview

Abstract

We consider the propagation of slow light with an orbital angular momentum (OAM) in a moving atomic medium. We have derived a general equation of motion and applied it in analyzing propagation of slow light with an OAM in a rotating medium, such as a vortex lattice. We have shown that the OAM of slow light manifests itself in a rotation of the polarization plane of linearly polarized light. To extract a pure rotational phase shift, we suggest to measure a difference in the angle of the polarization plane rotation by two consecutive light beams with opposite OAM. The differential angle Deltaalphal is proportional to the rotation frequency of the medium omegarot and the winding number l of light, and is inversely proportional to the group velocity of light. For slow light the angle Deltaalphal should be large enough to be detectable. The effect can be used as a tool for measuring the rotation frequency omegarot of the medium.