Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Enhanced DC voltage control strategy for fault management of a VSC-HVDC connected offshore wind farm

Tzelepis, Dimitrios and Oulis Rousis, Anastasios and Dysko, Adam and Booth, Campbell (2017) Enhanced DC voltage control strategy for fault management of a VSC-HVDC connected offshore wind farm. In: RPG 2016 International Conference on Renewable Power Generation. IET, Stevenage. ISBN 9781785613005

Text (Tzelepis-etal-IET-RGP-2016-Enhanced-DC-voltage-control-strategy-for-fault-management-of-a-VSC-HVDC)
Tzelepis_etal_IET_RGP_2016_Enhanced_DC_voltage_control_strategy_for_fault_management_of_a_VSC_HVDC.pdf - Accepted Author Manuscript

Download (1MB) | Preview


This paper proposes a DC voltage control strategy for fault management taking into advantage the operation of the master controller located in the offshore AC substation platform. The issue resolved via the proposed controller relates to over-voltages caused in the HVDC links when the power transfer onshore is disrupted due to faults occurring at the AC side of the onshore grid. The control strategy presented in this paper proposes an effective way of maintaining the DC over-voltage within safety limits via reducing the connected wind farm power output. The operation of the aforementioned control strategy requires small computational power and no communication.