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Abstract 

Current approaches to molecular diagnostics rely heavily on PCR amplification and optical 

detection methods which have restrictions when applied to point of care (POC) applications. 

Herein we describe the development of a label-free and amplification-free method of pathogen 

detection applied to E. coli which overcomes the bottleneck of complex sample preparation and 

has the potential to be implemented as a rapid, cost effective test suitable for point of care use. 

Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for 

sensitive detection without the necessity for prior in vitro amplification.  

Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal 

probe was selected from a pool of probe candidates identified in silico.  The specificity of probes 

was investigated on DNA microarray using fluorescently labelled 16S rRNA target. The probe 

yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 

pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point 

format and specificity which correlated to microarray data was demonstrated. Excellent 

sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and 

investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was 

demonstrated with which rRNA could be detected in a species specific manner within 10-40 min 

at room temperature without wash steps.  

 

Keywords 

Molecular diagnostics, electrochemical impedance spectroscopy, 16S ribosomal RNA, E. coli, 

pathogen detection, PCR-free 
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Introduction 

 

Infectious diseases have a major impact on public health causing approximately 15 million 

deaths each year which represents 26% of the annual mortality worldwide (Fauci and Morens 

2012;Morens and Fauci 2012). Molecular diagnostics plays an integral part in diminishing the 

impact of infectious diseases on public health. In particular point of care diagnostics for 

infectious disease have potential to improve clinical care outcomes by optimising prescribing 

decisions, and improving efficiency of care (Howick et al. 2014). Nucleic acid target 

amplification techniques such as polymerase chain reaction (PCR) and isothermal amplification 

methods like e.g. loop-mediated isothermal amplification (LAMP), helicase-dependent 

amplification (HDA), and rolling circle amplification (RCA) have gained a substantial role in 

clinical applications (Emmadi et al. 2011;Franca et al. 2013;Muldrew 2009). Although PCR and 

real-time PCR achieve excellent limit of detections (LOD), the instrumental and operational 

requirements paired with the time-to-result (TTR) for these techniques are often prohibitive for 

point-of-care (POC) applications (Gubala et al. 2012).  

Electrochemical biosensors have favorable attributes for POC applications, such as capacity to 

be low cost, compact, portable, and have the potential for label-free target detection (Wang 

2006). But until now, reports of methods which avoid target amplification prior to hybridization 

followed by electrochemical detection have been rare. The research group of Shana O. Kelley 

used signal amplification based on Ru
3+

 adsorption towards hybridized target nucleic acids and 

Fe
3+

 amplification at the surface of nanostructured microelectrodes for the direct detection of E. 

coli mRNA by differential pulse voltammetry and combined this with electrochemical lysis of 

bacterial cells (Besant et al. 2013;Sage et al. 2014). Several groups applied enzymatic signal 

amplification using Streptavidin-conjugated horseradish peroxidase or alkaline phosphatase 
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bound to the hybridized 16S rRNA via biotinylated detection probes or biotinylated intercalator 

for the amperometric detection of bacterial RNA (Elsholz et al. 2006;Gau et al. 2001;Liao et al. 

2006;Liao et al. 2007;Sin et al. 2013;Williams et al. 2003;Zimdars et al. 2015). All these 

enzymatic signal amplification methods require multiple incubation and washing steps which 

makes them less amenable to implementation in a fully integrated sample-to-answer system. 

 

Electrochemical impedance spectroscopy is a powerful tool to generate point-of-care tests 

(POCT) as it is a label-free detection technology enabling the direct detection of targets binding 

to immobilized probes without the requirement of any kind of target labelling or further binding 

of detection probes. This makes EIS an ideal detection method to be integrated into truly portable 

sample-to-answer POCT. EIS has demonstrated multiparametric detection capability enabling 

the label-free detection of nucleic acids, whole cells, small molecules and proteins on the same 

platform as shown previously by ourselves (Ciani et al. 2012;Corrigan et al. 2013;Corrigan et al. 

2012;Huang et al. 2015) and other groups as described in reviews (Gebala and Schuhmann 

2012;Katz and Willner 2003;Paenke et al. 2008;Park Jin -Young and Park Su-Moon 2009). This 

great potential for EIS-based biosensors is reflected in an increasing number of publications in 

recent years. Most of these publications however lack evidence for potential real-world 

application in clinical POC settings, as investigations are executed with short synthetic targets 

rather than clinical samples. Faradaic impedance spectroscopy is performed in the presence of 

redox species in the bulk solution which is alternatively oxidized and reduced. EIS detection of 

nucleic acid targets is usually performed in the presence of negatively charged redox species in 

the measurement buffer e.g. potassium hexacyanoferrate (Kafka et al. 2008). The accumulation 

of negative charges during the hybridization process of the target DNA towards DNA probes 



 5 

immobilized on electrode surfaces causes a repulsion of the redox species, thus inhibiting the 

redox reaction and enhancing the charge transfer resistance value. In order to enhance the signal 

difference before and after hybridization of the nucleic acid target to the immobilized probe 

layer, uncharged peptide nucleic acid (PNA) probes have been applied instead of DNA probes 

(Corrigan et al. 2012;Degefa and Kwak 2008;Keighley et al. 2008a;Liu et al. 2005). Several EIS 

studies with immobilized DNA and PNA probes have been performed so far with short artificial 

targets or PCR products (Corrigan et al. 2014;Corrigan et al. 2012;Degefa & Kwak 

2008;Ghindilis et al. 2009;Huang et al. 2015;Kafka et al. 2008;Keighley et al. 2008a;Keighley et 

al. 2008b;Riedel et al. 2014). We have shown recently the target amplification-free detection of 

MRSA genomic DNA (Corrigan et al. 2013) and amplification-free detection of bacterial 

plasmid DNA (Huang et al. 2015). Park et al. detected HCV RNA by EIS using PNA probes 

(Park et al. 2010). 

Here we report to the best of our knowledge the first example of a direct label- and amplification 

free EIS-based detection of bacterial 16S ribosomal RNA for bacterial species identification. Our 

approach takes advantage of rRNA large target size and of its naturally high number of copies 

present in bacteria. 
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Experimental Section 

 

Bacterial culture and RNA isolation 

S. aureus, P. aeruginosa and E. coli clinical isolates from the Edinburgh Royal Infirmary were 

subcultured onto Columbia blood agar and incubated overnight at 37°C in a CO2 incubator. The 

bacterial cells were harvested during mid-logarithmic growth, when RNA levels are at their 

highest due to high metabolic activity. Cells were inoculated into saline solution and the optical 

density measured using a Densicheck (bioMerieux). This gives values in McFarland units, 

proportional to the cellular concentration of bacteria in the suspension. E. coli DH10β liquid 

cultures were prepared by inoculating 2.5 mL Luria-Bertani (LB) medium (10 g/L Bacto-

tryptone, 5 g/L yeast extract, 10 g/L NaCl) with an E. coli DH10β colony from a LB agar plate 

and incubated for 16 h at 37 °C in a shaking incubator. Protocols 4 and 7 from the RNAprotect 

Bacteria Reagent Handbook (Qiagen, 2
nd

 edition 2005) were followed with a few minor 

alterations. The RNA is stabilised, before lysis, by the addition of RNAprotect Bacteria Reagent 

(Qiagen). This prevents degradation of RNA transcripts and induction of genes. The bacterial 

suspension (1ml) was added to 2ml of the stabilising reagent. After centrifugation and pelleting, 

the bacteria were disrupted by enzymatic lysis and Proteinase K digestion. Lysostaphin was used 

for Gram-positive bacteria such as S. aureus, while lysozyme was used for Gram-negatives. The 

manufacturer’s recommended incubation time with these lytic enzymes has been increased from 

10 to 30 min, followed by 10 min incubation with Proteinase K. The incubation temperature has 

also been increased to 37°C. The lysozyme, as per instructions, was used at 15mg/ml of TE 

buffer. Lysostaphin was used at 50μg/ml. 

 



 7 

Total RNA was then purified from the bacterial lysate using the RNeasy Mini Kit (Qiagen). 

Remaining DNA has been removed by on-column DNase digestion with DNase 1. After 

purification, RNA was eluted from spin columns into two separate aliquots of 30 μL. Total RNA 

eluate was quantified spectrophotometrically (Nanodrop, from Labtech, Sussex, UK).   

 

Fluorescence labelling 

RNA was fluorescence labelled using Cy3 Label-IT Nucleic Acid kit (Mirus Bio, LLC) 

according to the manufacturer’s instructions. This kit covalently binds Cy3 residues at a site 

other than that used in base pairing and suitable for hybridization experiments.  

 

PNA microarray fabrication 

Thiol-modified PNA oligonucleotides were spotted in 1x Schott Nexterion spot buffer (20 μM) 

in replicates of three within each array on Schott Nexterion Slides E (epoxy silane modified 

surface; Schott, Jena, Germany) with four 200 μm diameter split pins and a MicroGrid II 

(BioRobotics, Cambridge, UK) at 40-50% relative humidity at room temperature. Epoxysilane 

slides were immediately immobilized at a relative humidity of 75% at room temperature for 1 

hour followed by storage over night at room temperature under dry conditions. This generated 

spots with a diameter of approximately 200 μm. The slides were then washed with 0.1% 

TritonX-100 solution under constant mixing for 5 min at RT, with 1 mM HCl solution for 4 min, 

with 100 mM KCl solution for 10 min, and with deionized water for 1 min. The slides were 

blocked with 50 mM ethanolamine + 0. 1% sodium dodecyl sulphate (SDS) in 0.1 M Tris buffer 

(pH 9) for 15 min at 50 C. After blocking the slides were washed in deionized water for 1 min 

and then dried by centrifugation (2 min at 800 g).  
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Microarray hybridization and data acquisition 

Microarray hybridization was performed using Agilent 8 gasket slides (Agilent Technologies, 

Stockport, UK) and hybridization chambers with the printed slide which had been washed and 

blocked placed array facing downward, in contact with the hybridization solution. All rRNA 

hybridizations were performed in 50 µL hybridization solution (2x SSPE buffer + 0.01 % SDS + 

100 nM hybridization control) at 55 C for 2 hours under rotation in a pre-heated Agilent 

hybridization oven. Following incubation, slides were washed with 2x SSC + 0.1 % SDS for 10 

min, 2x SSC for 10 min, 0.2x SSC for 10 min. Each slide was then dipped in H20 for a few 

seconds and dried by centrifugation for 2 min at 800 g. 

 

Fluorescence images were generated with a Tecan LS Reloaded fluorescence scanner (Tecan, 

Maennedorf, Switzerland) with excitation at 532 nm and emission at 575 nm. Quantification of 

fluorescence signal intensities was performed with the Quantarray software (Perkin Elmer, 

Waltham, MA) using the Histogram quantification method. For further analysis, the mean signal 

intensity minus local background intensity was processed with Excel (Microsoft Corp., 

Redmond, USA) and the mean and standard deviation of all replicates were calculated. 

 

Electrode Cleaning and Functionalization 

Screen printed dual gold working electrode (1.75 mm x 4 mm) sensors with an integrated 

Ag/AgCl reference electrode and a gold counter electrode (Dropsens, Oviedo, Spain) used for 

kinetic EIS testing were cleaned using cyclic voltammetry in 100 mM aqueous sulphuric acid 

solution applying ten CV cycles between 0 - 1.6V and three cycles between 0 - 1.3V as described 
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in previous publication from this laboratory (Corrigan et al. 2012). For end point EIS assays, 

gold disc electrodes (2 mm diameter) purchased from IJ Cambria Scientific (Carms, UK) were 

mechanically polished using alumina powder, rinsed and cleaned for 10 min with piranha 

solution (6 mL concentrated H2SO4 + 2 mL 30% (v/v) H2O2 solution; caution: such solution 

should be handled with extreme care) as described previously by our group (Corrigan et al. 

2012).  

 

After cleaning, all electrodes were incubated with a solution of 1.5 μM thiol-modified PNA 

solution + 30 μM mercaptohexanol + 5 mM Tris(2-carboxyethyl)phosphine in 50% (v/v) DMSO 

for 16 h at room temperature for Dropsens electrodes and 30 °C for IJ Cambria gold disc 

electrodes, respectively.  Electrodes were rinsed in 50% (v/v) DMSO and incubated in 1 mM 

mercaptohexanol + 5 mM Tris(2-carboxyethyl)phosphine in 50% (v/v) DMSO for 1 h at 30 °C. 

Then gold disc electrodes were washed with 50% (v/v) DMSO and the EIS measurement buffer 

(0.1 mM K3[Fe(CN)6] + 0.1 mM K4[Fe(CN)6] + 10 mM phosphate buffer) for 2 h and 1 h, 

respectively. Screen printed dual gold working electrode were washed with 50% (v/v) DMSO 

and the EIS measurement buffer (0.1 mM K3[Fe(CN)6] + 0.1 mM K4[Fe(CN)6] + 10 mM 

phosphate buffer + 20 mM NaCl) for 1 h and 5 min, respectively. 

 

EIS measurements 

End point EIS measurements were performed using a three electrode system with an Ag/AgCl 

(3M KCl) reference electrode and a platinum wire counter electrode (both from Metrohm, 

Herisau, Switzerland) connected to an Autolab potentiostat PGSTAT12 running FRA software 

(Metrohm, Herisau, Switzerland). EIS measurements were performed at a DC potential of 0.19 V 
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with an amplitude of 10 mV rms using a frequency range between 100,000 Hz and 0.1 Hz (15 

frequencies) in 0.1 mM K3[Fe(CN)6] + 0.1 mM K4[Fe(CN)6] + 10 mM phosphate buffer, pH 7.0 

+ 20 mM NaCl. Hybridization took place using 50 μL of 16S rRNA solution in 2×SSC for 2 h at 

55 °C. After hybridization electrodes were washed with 2×SSC, 0.2×SSC and EIS measurement 

buffer for 10 min in each. Data were collected in the form of Nyquist plots and fitted to the well-

established Randles Equivalent Circuit (Randles 1947).  Values for Rct had errors typically of 5-

10% and this agreed with previous studies (Corrigan et al. 2013). 

 

Kinetic EIS measurements were performed on screen printed sensors connected to an Autolab 

potentiostat at open circuit potential at an amplitude of 10 mV rms at 15 frequencies in the range 

100 000 Hz – 0.1 Hz. Hybridization and measurement were performed in measurement buffer 

consisting of 0.1 mM K4[Fe(CN)6] + 0.1 mM K3[Fe(CN)6] + 10 mM phosphate buffer pH 7.0 + 

20 mM NaCl. Ribosomal RNA sample solutions were heated to 95°C for 5 min, and transferred 

to ice for 2 min prior to measurement. A baseline measurement was preformed target free in 

measurement buffer. Following one EIS spectrum on each electrode the solution was replaced 

with measurement buffer containing target rRNA.  
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Results and Discussion 

 

Fluorescence microarray-based probe evaluation 

In this paper we report the development of an EIS-based procedure for direct label- and 

amplification-free detection of rRNA for bacterial species identification based on immobilized 

species specific probes. By employing fluorescent microarray methods, an optimal probe was 

identified which allowed sensitive and specific E. coli rRNA detection when transferred to the 

EIS platform, as schematically depicted in Figure 1. The experimental microarray probe 

evaluation was necessary because the hybridization efficiency of certain probes depends on the 

relative probe/ target position and the accessibility of the target, which differs significantly 

between different types of targets (e.g. PCR products and rRNA). As a large number of 

published probe sequences for bacterial species identification are available, we selected a panel 

of such probes for screening. The specificity of the probes was tested against the ARB ribosomal 

RNA database created by Wolfgang Ludwig et al (Ludwig et al. 2004) from the Technical 

University of Munich, using the probeCheck online tool from the Department of Microbial 

Ecology from the University of Vienna (http://131.130.66.200/cgi-

bin/probecheck/probecheck.pl) (Loy et al. 2007). Probe sequences selected were predominantly 

targeted against 16S ribosomal RNA. Some of the published probes, especially several E. coli 

probes from Francois et al. did not show the expected specificity for E. coli in silico and were 

therefore removed from the panel (Francois et al. 2006). Four previously published E. coli 

specific probes were tested in-silico and immobilized as PNA variants on glass microarrays with 

fluorescence-labeled rRNA, as can be seen in Figure 2. The sequence of probes P51 and P52 

were deduced from published E. coli specific DNA probes based on a literature survey of 

http://131.130.66.200/cgi-bin/probecheck/probecheck.pl
http://131.130.66.200/cgi-bin/probecheck/probecheck.pl
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published species specific probes targeting the 16S rRNA (Anzai et al. 2008;Behrens et al. 

2003a;Elsholz et al. 2006;Francois et al. 2006;Jin et al. 2008;Wiesinger-Mayr et al. 2007). 

Probes P92 and P93 were previously used by Stender et al. and Perry-O’Keefe et al. as PNA 

probes in in-situ hybridization assays (Perry-O'Keefe et al. 2001;Stender et al. 2001). The four 

different PNA probes were tested against fluorescence-labeled rRNA from E. coli, P. 

aeruginosa, and S. aureus in order to investigate the hybridization efficiency and specificity of 

the selected probes. As can be seen in Figure 2, the four E. coli specific probes varied in their 

behavior in terms of hybridization yield and specificity. Probes P93 and P51 showed the highest 

fluorescence intensities when hybridized with E. coli rRNA, however probe P92 showed the 

lowest degree of cross-hybridization with P. aeruginosa, and S. aureus rRNA, respectively. 

Variation in specificity and fluorescence yield of interactions between probes taken from the 

literature and the target of interest highlights the importance of experimental investigation of 

sequences using a method such as DNA microarray following in silico checks. The different 

degrees of cross-hybridization can be explained by the sequence homology of the probes with the 

P. aeruginosa, and S. aureus rRNA sequence. Regions of the probe which share 

complementarity with that of other pathogens as well as the target itself are difficult to avoid. 

This is particularly true for highly conserved 16S rRNA sequences, however due to the 

endogenous amplification of rRNA, with approximately 20,000 rRNA copies per E. coli cell 

(Zwirglmaier et al. 2004), it is nonetheless a desirable target. Investing focus on selection and 

experimental validation of probe sequences, as tested herein, allows specificity challenges to be 

overcome, such that the advantage of endogenous high copy number on detection sensitivity can 

be exploited. In this case probe P93 has nine adjacent nucleotides complementary towards P. 

aeruginosa and three nucleotides complementary to S. aureus rRNA according to the sequence 
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alignment data shown by Stender et al (Stender et al. 2001). Probe 92 only has five adjacent 

nucleotides complementary towards P. aeruginosa, and four adjacent nucleotides 

complementary towards S. aureus rRNA. The low specificity of probe 51 can be explained by a 

region of ten nucleotides within the probe sequence which is complementary towards the P. 

aeruginosa, and S. aureus rRNA sequence. Based on this microarray results probe P92 was 

selected for further tests. 

 

Insert Figure 1 here 

 

Hybridization of E. coli rRNA to probe 92 on the fluorescence glass microarray platform was 

performed over a concentration range of 0.02 nM – 2 nM to determine the limit of detection 

(LOD) (see Figure 2). The LOD defined by the mean signal of the buffer control plus three time 

the standard deviation was determined to be 20 pM. This is in the range of LODs typically 

obtained when short artificial targets are hybridized to DNA microarrays. In a previous study we 

obtained LODs of 10 pM with amino-modified probes specific for human cytomegalovirus 

(HCMV) and hepatitis C virus (HCV) immobilized on epoxy silane functionalized glass 

microarray slides when hybridized to short artificial targets (Schulze et al. 2011). This relatively 

low LOD of probe P92 towards full length E. coli 16S rRNA indicates a good accessibility of the 

probe sequence on the target. The secondary structure of the rRNA causes clear differences in 

the accessibility of different regions of the 16S rRNA as shown by Behrens et al (Behrens et al. 

2003a;Behrens et al. 2003b).  

 

Insert Figure 2 here 
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Electrochemical impedance spectroscopy end-point measurements 

 

The E. coli specific PNA probe P92 was selected for testing by EIS. P92 was immobilized as 

PNA probe on gold electrodes for label-and amplification-free detection of 16S rRNA (see 

Figure 1). Figure 3 (left) shows the Nyquist plots obtained on electrodes functionalized with P92 

before (black and blue curves) and after hybridization with 1 nM E. coli rRNA and P. 

aeruginosa rRNA, respectively. Figure 3 (right) shows the mean signal increase ratios obtained 

after hybridization with 0.05 nM and 1 nM target and non-target rRNA. The specificity obtained 

in the end-point EIS measurement correlated well with the specificity obtained in the 

fluorescence-based microarray experiments (see Figure 3). Hybridization with 1 nM E. coli 

rRNA caused a more than 700 % increase relative to the baseline electron charge transfer 

resistance (Rct) value. This shows the high sensitivity of the system, which we think is attributed 

to the use of an uncharged PNA probe layer and to the fact that a large target molecule with a 

high number of negative charges binds to this uncharged probe layer in combination with the 

negatively charged electroactive species in solution (Ferri-/Ferrocyanide) causing a larger Rct 

increase. This dependency of the signal change on the target size can also be seen in Figure 4. 

Hybridization with 1 nM full length 16S rRNA (appr. 1.5 kb) caused an 8.4 times signal 

increase, whereas the same concentration of a complementary 20mer artificial target caused no 

detectable signal increase. These results are in agreement with EIS data which we obtained 

recently with New Delhi Metallo-beta-lactamase (NDM) gene specific PNA probes tested either 

with 620 nucleotide long single-stranded PCR products and 20 nucleotide long artificial targets, 

respectively. Tests performed with the longer PCR products yielded a 100-times lower LOD of 

100 pM compared to the short 20mer target (LOD = 10 nM) (Huang et al. 2015). 
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We also investigated the impact of the hybridization condition (2h at 55 C) on the rRNA 

integrity and demonstrate that both 16S and 23S rRNA peaks are present following EIS 

hybridization protocol. Figure S1 shows an Agilent 2100 Bioanalyzer electropherogram of an E. 

coli rRNA sample before (black curve) and after 2h hybridization at 55C (red), which indicates 

that we detect full length 16S rRNA in the EIS assay and that the rRNA is not fragmented or 

degraded during the 2h incubation at 55C.   

 

Insert Figure 3 here 

 

 

Insert Figure 4 here 

 

The dose-response curve in Figure 5 shows the sensitivity and LOD of the EIS end-point 

measurement of E. coli rRNA. The LOD was determined to be 50 pM and was therefore in the 

same range as that of the fluorescence-based microarray system. This achievement is significant 

as the EIS based system offers attributes amenable to POC diagnostic application like e.g. label-

free target detection and low cost portable instrumentation which are not achievable with the 

fluorescence-based benchmark microarray method used here for probe development only. As 

rRNA is present at approx. 20,000 copies per cell this theoretically equates to detection of 

bacteria in the attomolar range, or to detection of approx. 500 bacteria (CFU)/mL (Rastogi 

2006). Park et al. reported a LOD of 23 pM for the EIS-based detection of short artificial 15mer 

RNA targets with immobilized PNA probes (Park et al. 2010). The authors applied a 

sophisticated but laborious mixed monolayer based on a self-synthesized crown either which 

binds ammonium modified PNA probes. Although the LOD reported by Park et al. is slightly 
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lower than in this study, improved sensitivity of detection is achieved here, and greater 

discrimination of baseline and target hybridization is achieved. Park et al. observed a 2.2 times 

signal increase at 1 nM target concentration compared to our 8.4 times signal increase (see 

Figure 5).  

 

Insert Figure 5 here 

 

Electrochemical impedance spectroscopy kinetic measurements 

 

In addition to end-point measurements we also performed kinetic EIS measurements where 

change in Rct is monitored in real time during the hybridization process. In this case the target 

solution was present in the measurement buffer and EIS measurements were continuously 

repeated during the hybridization without change of solution and addition of washing steps after 

hybridization (see Figure 1). We have shown previously that this procedure can be used to detect 

MRSA specific PCR product hybridization (Corrigan et al. 2012). Figure 6 shows that we can 

also detect direct rRNA hybridization within <10 minutes at room temperature. This is an 

important step towards an on-site point-of-care test for bacterial species identification. These 

tests were performed with Dropsens screen-printed gold electrodes which contained two working 

electrodes together with a common gold counter and silver/silver chloride pseudo reference 

electrode on a single chip. On each chip one of the working electrodes was functionalized with a 

mixed monolayer of the E. coli specific PNA probe P92 together with mercaptohexanol, whereas 

the second working electrode was functionalized only with mercaptohexanol. The 

mercaptohexanol functionalized electrode served as a negative control showing the degree of 

unspecific binding of target molecules to the electrode surface. Following a baseline 

measurement preformed in target free measurement buffer, the solution was replaced by 
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measurement buffer containing target rRNA and EIS measurements were continuously repeated. 

By monitoring the change in Rct over repeated EIS spectra, hybridization of rRNA to probe 92 

was monitored with respect to time. Data in Figure 6 are normalized against the initial 

measurements of each electrode showing the signal increase ratio at different time points of the 

hybridization with 750 pM E. coli and P. aeruginosa rRNA. A fractional Rct increase of greater 

than 100% was detected on P92 functionalized electrode after hybridization with E. coli rRNA 

already within the first 10 min of incubation. This increase was much lower on electrodes which 

were hybridized with non-complementary P. aeruginosa rRNA, where a small increase in Rct 

was observed for the initial measurements followed by a nearly unchanged signal. This shows 

the high degree of specificity which was obtained under these non-stringent conditions, with 

hybridization at room temperature far below the melting temperature of the applied PNA probe, 

and the absence of any washing steps.  

This makes the direct label-free rRNA detection an ideal candidate for POCT development for 

pathogen detection. Direct target detection, which does not require the use of an enzyme label for 

signal amplification as used in many amperometric pathogen biosensors significantly reduces the 

complexity of the test and simplifies the integration of the detection method into a microfluidic 

sample-to-answer cartridge with pre-loaded reagents. Nevertheless, amperometric biosensors, 

which use e.g. horseradish peroxidase or alkaline phosphatase enzyme labels for signal 

amplification are interesting alternatives for bacteria detection as they also enable direct PCR-

free bacterial rRNA detection. Liao et al. and Elsholz et al. reported LODs of 4 x 10
4
 CFU/mL 

and 10
5 

CFU/mL (0.5 ng/µL total RNA) which are slightly higher than the LOD obtained in this 

study (Elsholz et al. 2006;Liao et al. 2006). Zimdars et al recently reported a very low LOD of 

30 fM 16S rRNA using a biotinylated intercalator as a coupling site for a streptavidin/alkaline 
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phosphatase enzyme label (Zimdars et al. 2015). But these enzyme label based amperometric 

biosensors have several disadvantages regarding POCT development. Amperometric biosensors 

with enzyme labels such as horseradish peroxidase or alkaline phosphatase require the 

integration of substrate solutions and several washing steps. The long term stability of enzymes 

in a microfluidic cartridge can also pose a challenge and could potentially significantly increase 

the assay costs if low temperature storage and shipment of the microfluidic cartridge is required.  

Interesting alternatives to ribosomal RNA based pathogen detection methods are whole bacteria 

diagnostic tests which have the advantage that they do not require bacterial cell lysis and nucleic 

acid extraction and purification (Hassan et al. 2015;Morales-Narvaez et al. 2015). This makes the 

integration of such a test into a sample-to-answer system much easier. Especially, EIS-based 

methods with immobilized bacteria specific antibodies have been proven to enable direct label-

free detection of whole bacteria and were applied for the detection of various bacteria with a 

wide range of LODs reported, ranging from 2 CFU/mL to 10
6
 CFU/mL (Ahmed et al. 2014;dos 

Santos et al. 2013;Yang et al. 2004). A challenge of these immunodetection methods is the 

stability of the antibodies during and after immobilization. The shelf life of antibodies on the 

sensor surface is not very long and the binding efficiency tends to decrease over time (Ahmed et 

al. 2014). Whereas, the PNA probes used in the herein described method are very stable as they 

are resistant to nucleases and proteases, which should simplify the long term storage of 

electrodes with functionalized PNA probes and significantly enhance the shelf life of PNA 

functionalized electrodes compared to electrodes with immobilized antibodies.  
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Insert Figure 6 here 

 

Further development 

The next step towards a fully integrated sample-to-answer system is the combination of the 

detection module with a sample preparation module including sampling, e.g. via nasal swabs and 

bacterial cell lysis. There are examples of successful integration of swab based sampling, 

enzymatic cell lysis and Boom method based nucleic acid purification in a microfluidic chip 

(Van Heirstraeten et al. 2014). Even so the work by van Heirstraeten et al. is an excellent 

example of the integration of lab processes into a microfluidic chip, the use of a large number of 

different solutions for lysis and purification including required buffer exchanges and a potential 

need for cold storage of the cartridge depending on the long term storage stability of the applied 

enzymes can make the final product quite expensive and difficult to produce. We are working on 

novel sample preparation approaches better adapted to fully integrated microfluidic POCT for 

infectious diseases and especially antibiotic resistance diagnostics.  

 

Conclusion 

We report the successful development of an EIS biosensor for direct detection of E. coli 16S 

rRNA. Designed with implementation in point of care applications in mind, the biosensor is 

characterised by rapid, sensitive, specific rRNA detection with no requirement for sample 

amplification, labelling or fragmentation. The kinetic EIS assay format has the capacity for 

miniaturisation and microfluidic cartridge integration. 

Oligonucleotide probe sequences for E. coli rRNA detection were identified in published 

literature and interrogated in silico. Probes were screened in vitro using fluorescence-based 
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microarrays. Based on microarray specificity and sensitivity data, a probe was selected for 

implementation in EIS molecular diagnostic assay development. In the absence of specificity 

enhancement associated with target amplification, focus was invested in demonstrating the 

capacity for specific detection, while taking advantage of target rRNA high copy number.  

Due to target size and accessibility considerations in EIS assay development, our approach of 

probe screening using in silico analysis, fluorescence-based microarray, followed by an endpoint 

EIS assay format has repeatedly allowed us to identify successful EIS probe candidates (Huang 

et al. 2015).  

An EIS detection assay was developed with a LOD of 50 pM, comparable to that achieved by 

fluorescence-based microarray but with POC compatible characteristics. Furthermore a kinetic 

EIS assay format allowed specific detection of E. coli 16S rRNA within 10 min at ambient 

temperature.   
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Figure captions: 

Figure 1: A brief schematic of experimental process described herein. Following in silico probe 

selection, fluorescently labelled rRNA is applied to an in-house microarray populated with E. 

coli rRNA specific PNA probes (A), as a probe selection screen. For EIS assay development, 

probes found to be of highest sensitivity and specificity for target E. coli rRNA are applied in 

gold electrode functionalization (B). The gold electrode biosensor is incubated with intact 

unlabelled rRNA (C) under controlled conditions and stringency washes (D) are performed, 

followed by EIS measurement in a conventional three electrode system electrochemical cell (E). 

EIS measurement of functionalized electrode background (H) and specific hybridization (I) is 

detected as change in charge transfer resistance (Rct). Our kinetic EIS setup (F, G) allows real-

time detection of rRNA hybridization rapidly, using low cost screen printed electrodes without a 

requirement for washing. Specific rRNA hybridization (G) causes repulsion of the redox species 

ferricyanide and change in charge transfer resistance (Rct) is proportional to the hybridized 

target concentration (I).  

 

Figure 2: Left: Mean fluorescence intensities obtained at four different E. coli specific PNA 

probes (P51, P52, P92, P93) after hybridization with 1nM fluorescence-labeled E. coli, P. 

aeruginosa, and S. aureus rRNA, respectively. Right: Dose-response curve obtained with E. coli 

specific PNA probe P92 immobilized on glass microarray slides which were hybridized with 

different concentrations of fluorescence-labeled E. coli 16S rRNA; n = 3. An inset figure of 

fluorescence intensities obtained from rRNA concentrations between 0 - 500 pM can be found in 

the supporting information as Figure S-2. 
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Figure 3: Left: Nyquist plot obtained with electrodes 1 and 2 with E. coli specific PNA probe 

P92 immobilised on both of them before (black and blue curve) and after 2 h hybridization with 

1 nM E. coli (red) and P. aeruginosa rRNA (green) rRNA, respectively. Right: Mean signal 

increase ratios obtained with E. coli specific PNA probe P92 after hybridization with E. coli 

(black) and P. aeruginosa rRNA (red) rRNA, respectively; n = 3. 

 

Figure 4: Comparison of EIS signal increase ratios obtained with E. coli specific PNA probe P92 

after hybridization with short 20mer artificial targets and full length E. coli 16S rRNA, 

respectively. 

 

Figure 5: EIS dose-response curve obtained with E. coli specific PNA probe P92 immobilized on 

gold electrodes which were hybridized for 2h at 55 C with different concentrations of unlabeled 

E. coli rRNA; n = 3. An inset figure of signal increase ratios obtained from rRNA concentrations 

from 0 - 100 pM can be found in the supporting information as Figure S-3. 

 

Figure 6: Signal increase ratios obtained at screen-printed electrodes functionalised with E. coli 

specific PNA probe P92 and MCH only (negative control), respectively, following exposure to 

750 pM E. coli and P. aeruginosa rRNA in EIS measurement buffer, respectively. EIS 

measurements were continuously repeated in the presence of the target solution without any 

washing steps.  
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