Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Pattern transition in spacecraft formation flying via the artificial potential field method and bifurcation theory

Bennet, Derek J. and McInnes, C.R. (2008) Pattern transition in spacecraft formation flying via the artificial potential field method and bifurcation theory. In: 3rd International Symposium on Formation Flying, Missions and Technologies, 2008-04-23 - 2008-04-25.

[img]
Preview
PDF (strathprints005671.pdf)
strathprints005671.pdf

Download (2MB) | Preview

Abstract

In recent years many new and exciting space concepts have developed around spacecraft formation flying. This form of distributed system has the advantages of being extremely flexible and robust. This paper considers the development of new control methodologies based on the artificial potential function method and extends previous research in this area by considering bifurcation theory as a means of controlling the transition between different formations. For real, safety critical applications it is important to prove the stability of the system. This paper therefore aims to replace algorithm validation with mathematical proof through dynamical systems theory. Finally we consider the transition of formations at the Sun-Earth L2 point.