Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Review of dc-dc converters for multi-terminal HVDC transmission networks

Ased, Grain Philip and Gowaid, Islam Azmy and Finney, Stephen Jon and Holliday, Derrick and Williams, Barry W. (2016) Review of dc-dc converters for multi-terminal HVDC transmission networks. IET Power Electronics, 9 (2). pp. 281-296. ISSN 1755-4535

[img]
Preview
Text (Adam-etal-IETPE-2016-Review-of-dc-dc-converters-for-multi-terminal-HVDC)
Adam_etal_IETPE_2016_Review_of_dc_dc_converters_for_multi_terminal_HVDC.pdf - Accepted Author Manuscript
License: Unspecified

Download (2MB) | Preview

Abstract

This study presents a comprehensive review of high-power dc-dc converters for high-voltage direct current (HVDC) transmission systems, with emphasis on the most promising topologies from established and emerging dc-dc converters. In addition, it highlights the key challenges of dc-dc converter scalability to HVDC applications, and narrows down the desired features for high-voltage dc-dc converters, considering both device and system perspectives. Attributes and limitations of each dc-dc converter considered in this study are explained in detail and supported by time-domain simulations. It is found that the front-to-front quasi-two-level operated modular multilevel converter, transition arm modular converter and controlled transition bridge converter offer the best solutions for high-voltage dc-dc converters that do not compromise galvanic isolation and prevention of dc fault propagation within the dc network. Apart from dc fault response, the MMC dc auto transformer and the transformerless hybrid cascaded two-level converter offer the most efficient solutions for tapping and dc voltage matching of multi-terminal HVDC networks.