Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Improved performance low-cost incremental conductance PV MPPT technique

Zakzouk, Nahla E. and Elsaharty, Mohamed A. and Abdelsalam, Ahmed K. and Helal, Ahmed A. and Williams, Barry W. (2016) Improved performance low-cost incremental conductance PV MPPT technique. IET Renewable Power Generation, 10 (4). pp. 561-574. ISSN 1752-1416

[img]
Preview
Text (Zakzouk-etal-IETRPG2016-Improved-performance-low-cost-incremental-conductance-PV-MPPT-technique)
Zakzouk_etal_IETRPG2016_Improved_performance_low_cost_incremental_conductance_PV_MPPT_technique.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Variable-step incremental conductance (Inc.Cond.) technique, for photovoltaic (PV) maximum power point tracking, has merits of good tracking accuracy and fast convergence speed. Yet, it lacks simplicity in its implementation due to the mathematical division computations involved in its algorithm structure. Furthermore, the conventional variable step-size, based on the division of the PV module power change by the PV voltage change, encounters steadystate power oscillations and dynamic problems especially under sudden environmental changes. In this study, an enhancement is introduced to Inc.Cond. algorithm in order to entirely eliminate the division calculations involved in its structure. Hence, algorithm implementation complexity is minimised enabling the utilisation of low-cost microcontrollers to cut down system cost. Moreover, the required real processing time is reduced, thus sampling rate can be improved to fasten system response during sudden changes. Regarding the applied step-size, a modified variable-step size, which depends solely on PV power, is proposed. The latter achieves enhanced transient performance with minimal steady-state power oscillations around the MPP even under partial shading. For proposed technique's validation, simulation work is carried out and an experimental set up is implemented in which ARDUINO Uno board, based on low-cost Atmega328 microcontroller, is employed.