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Project Complexity and Risk Management (ProCRiM): Towards Modelling Project 

Complexity driven Risk Paths in Construction Projects 

Abstract—Project complexity has been extensively explored in the literature because of its 

contribution towards the failure of major projects in terms of cost and time overruns. Focusing on 

the interface of Project Complexity and Interdependency Modelling of Project Risks, we propose a 

new process that aids capturing interdependency between project complexity, complexity induced 

risks and project objectives. The proposed modelling approach is grounded in the theoretical 

framework of Expected Utility Theory and Bayesian Belief Networks. We consider the decision 

problem of identifying critical risks and selecting optimal risk mitigation strategies at the 

commencement stage of a project, taking into account the utility function of the decision maker 

with regard to the importance of project objectives and holistic interaction between project 

complexity and risk. The proposed process is supported by empirical research that was conducted in 

the construction industry in order to explore the current practices of managing project complexity 

and the associated risks. The experts interviewed acknowledged the contribution of the proposed 

process to the understanding of complex dynamics between project complexity attributes and risks. 

Application of the proposed process is illustrated through a simulation study. 

Keywords—Project complexity; project risks; project objectives; Expected Utility Theory; Bayesian 

Belief Networks; empirical research 

1. Introduction 

Long-term projects involving new product development (NPD) often result in major delays and cost 

overruns and therefore, bearing in mind the complexity of such projects, it is extremely important to 

consider interdependency between risks and involve different stakeholders in identifying key risks 

(Ackermann et al., 2014). Complexity in projects relates to structural elements, dynamic elements 

and interaction of these elements across the broad categories of technical, organisational and 

environmental domains (Botchkarev and Finnigan, 2015; Kardes et al., 2013). There are two schools 



of thought with regard to whether risk is an element of complexity (Bosch-Rekveldt et al., 2011; 

Geraldi et al., 2011) or the two are distinct concepts (Saunders et al., 2015, 2016; Vidal and Marle, 

2008). Different methods have been proposed for evaluating project complexity (He et al., 2015; Lu 

et al., 2015; Nguyen et al., 2015; Vidal et al., 2011a, b; Xia and Chan, 2012) that mainly isolate 

complexity from risk. Adopting such a disintegrated approach of evaluating complexity and risks in 

silos results in undermining the synergistic effect of interacting complexity attributes (drivers) and 

complexity-induced risks and raises the possibility of selecting sub-optimal risk mitigation strategies.  

It is not only important to understand and evaluate project complexity but also to visualise the 

complex interaction between project complexity and complexity induced risks in order to prioritise 

critical risks and select optimal risk mitigation strategies. Moreover, these risks must also be linked 

to the project objectives which in turn will influence the utility of the decision maker concerning the 

relative importance of each project objective. Although the standard risk management process (SA, 

2009) comprising different stages – namely: risk identification; risk analysis; risk evaluation; risk 

treatment; and risk monitoring – is generally adopted in the literature of project risk management as 

it presents a systematic approach of modelling risks (Schieg, 2006), the interdependency between 

risks and complexity is not reflected in the framework. 

Project complexity attributes (drivers) pose vulnerabilities to the successful conclusion of major 

projects involving NPD, resulting in cost and time overruns. An important aspect of establishing a link 

between the knowns (represented by complexity attributes or drivers in this paper) at the 

commencement stage of a project and the ‘known unknowns’ (Ramasesh and Browning, 2014) 

(termed as risks in this paper) that may potentially materialise within the life cycle of the project has 

not been given due consideration. As we are focusing on the commencement stage of a project, the 

risks and strength of interaction between risks included in the model represent the belief of experts 

developed through learning from past experiences. However, unexpected emerging risks introduced 

during the life-cycle of the project and not envisioned at the commencement stage can have 



significant impact on the project objectives and therefore, besides establishing an effective risk 

management process, there is a need to cultivate a culture of alertness to deal with such risks 

categorised as ‘unknown unknowns’ (Ramasesh and Browning, 2014). Through this research, we are 

contributing to the risk management body of knowledge by addressing the following research 

questions (RQ): 

RQ1: How is the interdependency between project complexity and complexity induced risks 

associated with NPD in general and construction projects in particular treated in the literature? 

RQ2: How can we develop a risk management process and an effective modelling approach for 

capturing interdependency between complexity and risk in order to facilitate the decision making 

process of prioritising risks and risk mitigation strategies at the commencement stage of a project? 

RQ3: How is the interdependency between project complexity and risk managed in the construction 

industry? 

Bayesian Belief Networks (BBNs) offer an effective modelling technique for capturing 

interdependency between risks (Nepal and Yadav, 2015) whereas Expected Utility Theory (EUT) is 

widely used in decision making under uncertainty (Ruan et al., 2015). Within the theoretically 

grounded framework of EUT and BBNs, we propose a new process namely ‘Project Complexity and 

Risk Management (ProCRiM)’ integrating all stages of the standard risk management process (SA, 

2009) and establishing causal paths across project complexity attributes, risks and their 

consequences affecting the project objectives. The main merit of ProCRiM is its focus on the holistic 

interaction between complexity and risks without taking the extreme stance of either school of 

thought and therefore, the results do not depend on whether complexity and risk are treated as 

distinct concepts or not. Rather, we contend that it is the interdependency that must be given due 

consideration. We represent the project complexity attributes (known at the project 

commencement stage) as deterministic nodes, and risks and project objectives as chance nodes. We 



also characterise the preferences of a decision maker with regard to the project objectives by means 

of a utility function and demonstrate the application of ProCRiM through a simulation study. 

We also present our findings from 13 semi-structured interviews conducted with construction 

industry experts from South Australia. The empirical research helped in assessing the current 

techniques/tools used in the industry and evaluating the viability of ProCRiM. An overview of the 

research focus and the methodology adopted is presented in Fig 1. The rest of this paper is 

organised as follows: An overview of the relevant literature is presented in Section 2. The proposed 

process and modelling approach are described in Section 3. Details of the empirical research are 

presented in Section 4. The application of ProCRiM is illustrated in Section 5. Findings are discussed 

in Section 6. Finally, our conclusions and directions for future research are presented in Section 7. 

Fig 1. Research focus and methodology 

2. Literature Review 

As the focus of our research lies at the interface of project complexity and interdependency 

modelling of risks in NPD in general and construction projects in particular, we present a brief 

overview of literature in each field in the following subsections.  

2.1 Project Complexity 

Project complexity has been extensively explored within the literature on project management and a 

number of definitions have been proposed focusing on different dimensions including structural 

complexity, uncertainty, dynamics, pace and socio-political (Geraldi et al., 2011). For this study, we 

follow the definition proposed by Vidal and Marle (2008): ‘Project complexity is the property of a 

project which makes it difficult to understand, foresee and keep under control its overall behaviour, 

even when given reasonably complete information about the project system’. In order to gain insight 

into the emerging themes of project complexity, we classified the studies into three streams of 



conceptual frameworks/models, complexity measurement models and empirical studies 

investigating the constructs of complexity within different industries.  

2.1.1 Conceptual Frameworks/Models 

A number of frameworks have been proposed to conceptualise project complexity. The notion of 

project complexity as ‘consisting of many varied interrelated parts’ and its operationalisation in 

terms of ‘differentiation and interdependency’ (Baccarini, 1996) is replicated in most of the 

frameworks (Geraldi et al., 2011). There is a general consensus among the researchers that 

complexity must encompass different facets of the project context including technical, 

organisational, environmental and socio-technical dimensions. However, there are two different 

schools of thought with regard to the concept of complexity and uncertainty (Padalkar and 

Gopinath, 2016). Although the frameworks considering risk as a constituent of complexity emphasise 

the need for integrating these together (Bosch-Rekveldt et al., 2011; Geraldi et al., 2011), this is not 

followed in most of the models adopted for measuring complexity (Qureshi and Kang, 2015).  

Advocating the need for adopting systems thinking modelling, Williams (2005) reported that systems 

modelling provides an effective approach of investigating the contribution of systemic effects of 

project characteristics towards the time and cost overruns. In contrast to the concept of considering 

uncertainty as a vital part of complexity (Bosch-Rekveldt et al., 2011; Williams, 1999), Little (2005) 

and Vidal and Marle (2008) consider complexity and uncertainty as two separate concepts.  In a 

similar line of thought and supporting the need for understanding dynamics between risks in 

complex projects, Thamhain (2013) classified the dimensions of risk management into the degree of 

uncertainty, project complexity and impact and introduced the risk-impact-on-performance model 

for describing the dynamics and cumulative nature of risks affecting performance. Danilovic and 

Browning (2007) compared two complementary matrix based approaches for representing, 

analysing and managing crucial information regarding project domains and interactions.  



Following an in-depth literature review, Vidal and Marle (2008) proposed an integrated project 

complexity framework comprising four categories of project size, variety, interdependence and 

project context, whereas Whitty and Maylor (2009) proposed viewing complexity as a matrix across 

structural, dynamic, independent and interacting entities. Similarly, through conducting a systematic 

literature review, Geraldi et al. (2011) synthesised an integrated framework for assessing the project 

complexity comprising five dimensions of complexity – structural, uncertainty, dynamics, pace and 

socio-political, while Botchkarev and Finnigan (2015) developed a ‘complexity taxonomy’ with 

respect to three levels of product, project and external environment.  Using the secondary data from 

existing literature and primary data from interviews conducted in process engineering projects, 

Bosch-Rekveldt et al. (2011) presented a comprehensive framework for characterising project 

complexity in large engineering projects comprising technical, organisational and environmental 

facets of an interconnected network of organizations. In contrast to the studies focusing on country 

specific projects, Kardes et al. (2013) explored the structure of mega projects involving multi-country 

collaborations, challenges encountered during the execution and risk management techniques for 

dealing with the complexity.  

There are a number of studies establishing links between project complexity, risks and project 

performance. Wallace et al. (2004) used Structural Equation Modelling (SEM) to establish 

relationships between project risks and project performance related to software development 

projects. de Camprieu et al. (2007) presented a conceptual framework capturing the impact of 

project characteristics on different categories of risks that in turn influence the project performance. 

Carvalho and Rabechini Junior (2015) introduced a conceptual model linking risk management to the 

project success considering the moderating effect of project complexity. 

Using tertiary and bibliometric analysis, Thomé et al. (2015) synthesised the concepts of complexity, 

uncertainty, risk and resilience within the literatures of supply chain management and project 

management. They introduce a framework that links complexity and uncertainty to risk, establishing 



the indirect impact of risk management on complexity via resilience. Floricel et al. (2016) 

investigated the impact of complexity on project performance and confirmed their hypothesis 

through empirical research that there is an increase in the project performance in the presence of 

high levels of particular types of complexity if high levels of respective planning is present. Their 

results establish the link between complexity and project performance indicating the significant 

impact of strategies on the risks relative to different performance indicators.  

2.1.2 Theoretical Models for Evaluating Project Complexity 

Owing to the importance of evaluating project complexity, there has been significant progress in 

developing robust tools and techniques to measure complexity. Earlier models made use of simple 

matrix-based tools for scoring different characteristics of a project and calculating the average 

complexity value (Santana, 1990). Vidal et al. (2011a) introduced a multi-criteria approach of 

evaluating project complexity through the use of Analytical Hierarchy Process (AHP) considering 

project size, project variety, project interdependence and elements of context corresponding to 

organisational and technological facets. Using the similar hierarchy based modelling approach, He et 

al. (2015) developed a complexity measurement model based on the Shanghai Expo construction 

project in China using Fuzzy AHP, whereas Nguyen et al. (2015) developed a hierarchy of complexity 

factors and parameters in transportation projects within Vietnam.  Xia and Chan (2012) identified 

complexity measures for building projects in China through conducting a Delphi questionnaire 

survey.  

Qureshi and Kang (2015) developed their work on the conceptual frameworks of Bosch-Rekveldt et 

al. (2011) and Vidal and Marle (2008), and utilised SEM for understanding the influence of different 

organisational factors on project complexity rather than evaluating complexity index. They chose 

project size, project variety, interdependencies within the project and elements of context as the 

main variables within the model and validated it in different industries through survey 

questionnaire.  



2.1.3 Empirical Studies 

Case studies have been conducted to understand different dimensions of project complexity and 

their implications on project objectives. Edkins et al. (2007) conducted multiple case studies in the 

construction industry and explored qualitative methods of computer-aided content analysis and 

causal mappings drawn from the area of managerial and organisational cognition to understand the 

issues related to the management of projects. Antoniadis et al. (2011) conducted five case studies in 

the construction industry in order to investigate the socio-organisational aspect of complexity of 

interactions and effects on project schedule performance. In order to link the structural complexity 

to emergent behaviours and project performance, Lessard et al. (2014) introduced the “House of 

Project Complexity” encompassing both technical and institutional elements.  

Focusing on a single case study of a successful project, Koppenjan et al. (2011) investigated an 

upgrading project of a rail system in the Netherlands. They distinguished between two different 

approaches of managing projects: Predict-and-control (type I), where the risks and uncertainties are 

managed at the front end; and prepare-and-commit (type II), where flexibility is the norm for 

adapting the system with respect to changes in scope. The project did not experience major 

problems because uncertainty and complexity were managed through a Type I approach. Similarly, 

Giezen (2012) investigated how the project complexity was managed in the metro extension project 

of Rotterdam. The project used existing techniques and the staff were well trained in using similar 

technology, therefore, the technological complexity was immensely reduced. Focusing on the 

London Olympics 2012 Construction Program, Davies and Mackenzie (2014) classified it as a system 

of systems project and examined the organisational structure and process to coordinate the overall 

project, each individual system and interdependencies between them.  

2.2 Interdependency Modelling of Risks 

Researchers have been using different techniques for capturing interdependency between 

project/supply chain risks. Well-cited techniques include BBNs (Nepal and Yadav, 2015); Network 



Theory (Fang et al., 2012); Monte Carlo Simulation (Lee et al., 2012); Analytical Network Process 

(ANP) (Boateng et al., 2015); Causal Mapping (Ackermann et al., 2014); Systems Thinking (Williams, 

2005); Interpretive Structural Modelling (Pfohl et al., 2011); and Fuzzy AHP (Nieto-Morote and Ruz-

Vila, 2011). 

Fidan et al. (2011) introduced an ontology for linking risk and vulnerability to cost overrun in 

international construction projects. They attributed poor definition of risk and patterns of risk 

propagation as the major limitation of existing techniques in modelling and evaluating project risks. 

Following the same ontology, Yildiz et al. (2014) developed a knowledge-based risk mapping tool for 

cost estimation of international construction projects and Eybpoosh et al. (2011) introduced the 

concept of identifying risk paths in international construction projects using SEM. Using the same 

approach, Liu et al. (2016) explored risk paths in international construction projects performed by 

Chinese contractors and evaluated the impact of risks on project objectives.  

Fang et al. (2012) proposed an approach of capturing the interaction between project risks using 

network theory. Hwang et al. (2016) used the same technique and explored the interdependencies 

between risks across distinct phases of the university information system development project in 

Taiwan. Using the similar approach of causal mapping, Ackermann et al. (2014) developed a 

modelling process to help project managers appreciate the impact of interactions between project 

risks through explicitly engaging a wide stakeholder base whereas Lin and Zhou (2011) utilised the 

technique of fishbone diagrams for investigating major supply chain risks faced by a focal company 

in relation to design changes proposed by the customers.  

2.3 Limitations of Existing Models on Project Complexity and Project Risk Management 

AHP, Fuzzy Set Theory (FST) and hybrid methods integrating the two techniques have been 

extensively used in modelling project complexity due to their prominence in the literature on project 

risk management (Taroun, 2014). The main limitation of AHP is the underlying assumption of 

treating criteria as independent factors. Although this limitation has been overcome with the 



introduction of ANP, there is still a major concern of eliciting a number of preferences with regard to 

pairwise comparison of different criteria and alternatives (Ishizaka and Labib, 2009). The main 

criticism of FST is its inability to provide the operational definition of the membership of a fuzzy set 

whereas subjective probabilities have operational definitions (Cooke, 2004).  

Although interdependency modelling of project risks has been demonstrated using different 

techniques like ANP, SEM and network theory, these models fail to account for the propagation of 

risks and updating of beliefs upon receiving new information. SEM has its limitation in ensuring that 

necessary causal conditions have been met and therefore, the results might not guarantee causal 

relationships between the variables and associated strength (Bollen and Pearl, 2013). 

Existing models have mainly focused on a specific stage of risk management process like risk 

identification and/or risk analysis whereas to the best of the authors’ knowledge, an integrated 

project complexity and risk management process has not been presented. The mentioned 

techniques fail to assess risks within a probabilistic setting of interacting risks and do not focus on 

the risk treatment and risk monitoring stages that involve selection of optimal risk mitigation 

strategies and addition of new risks to the network respectively. Although some studies like Zhang 

and Fan (2014) and Fan et al. (2015) have focused on evaluating risk response strategies, these have 

the drawback that risks and strategies are treated as independent factors. 

To fill this gap, we propose an integrated process namely ProCRiM grounded in the theoretical 

framework of EUT and BBNs. As BBNs manifest both the causal map of interdependent variables and 

strength of relationship between interconnected variables, these can overcome the limitations of 

other causal mapping tools by providing the visualisation of propagation patterns. Furthermore, as 

there are a number of uncertainties at the commencement stage of a project, BBNs present a unique 

tool to model these uncertainties and cope with incomplete information (Badurdeen et al., 2014). 

EUT is a well-established tool in decision making under uncertainty (Ruan et al., 2015), however, its 

application to the literature of project risk management and practice is quite limited (Kutsch and 



Hall, 2005). Lu and Yan (2013) investigated two main types of measurement of perceived risk in the 

construction projects; direct measurement and expected-utility based measurement. Their results 

indicate that managers use the direct measurement method. However, in real scenarios, risks are 

not independent but interact within a network setting.  

3. ProCRiM and Modelling Approach 

Understanding the complexity of a project before the commencement stage is of significant 

importance (Bosch-Rekveldt et al., 2011; Thamhain, 2013). However, in order to identify critical risks 

and select optimal risk mitigation strategies, the complexity attributes need to be linked to different 

trails of complexity induced risks. We adapt the established risk management framework (SA, 2009) 

as it is used widely both by researchers and practitioners (Wang, 2015). Although the description of 

terms and concepts used in the framework is controversial (Aven, 2011), our focus is limited to the 

stages involved in the process.  

3.1 Project Complexity and Risk Management (ProCRiM) 

The proposed process is shown in Fig 2 manifesting its exclusive focus on the ‘systemicity’ of 

complexity drivers and risks. Instead of treating complexity and risk in isolation, we introduce the 

concept of complexity and risk network. The process starts with the specification of project context 

in terms of defining the scope of risk management process and identifying the stakeholders involved 

in the process.  

Fig 2. Project complexity and risk management (ProCRiM) with associated inputs and outputs 

Complexity and risk network identification is a critical stage where there is a need for bringing a 

paradigm shift as the existing literature is rife with conventional tools and techniques of identifying 

risk and complexity categories without focusing on the network of interacting factors. Complexity 

and risk network analysis involves determining the strength of interactions between complexity 

drivers and risks. Instead of calculating the probability and impact values for individual risks, this 

stage is meant to capture the importance of each risk and complexity driver within the network 



setting. In the risk evaluation stage, the decision maker assigns a utility function to the project 

objectives and critical risks are identified through propagating evidence across the network. This 

stage must be able to provide a visual aid to the decision maker in appreciating the propagation 

impact of risk(s). Depending on the importance of specific project objectives, the decision maker 

should be able to identify critical risks.  

Complexity and risk network treatment deals with the evaluation of different combinations of 

complexity and risk management strategies within the network setting. Sometimes, certain project 

complexity drivers can be adapted to manage the complexity and complexity driven risks. The 

proposed process flow is in contrast with the one established in the extant literature as instead of 

following unidirectional flow, it is an iterative process where evaluation of each combination of 

strategies necessitates re-assessing and re-evaluating the complexity and risk network. After 

determining the optimal combination of strategies, these are implemented and as complexity and 

risk management is a continuous process, there is a need for continuously monitoring the network 

and updating it on regular basis. 

This process presents a unique feature of complementing two different schools of thought on the 

concept of complexity and risk; one considering risk as an element of complexity (Bosch-Rekveldt et 

al., 2011; Geraldi et al., 2011; Williams, 1999) and the other distinguishing the two (Baccarini, 1996; 

Little, 2005; Vidal and Marle, 2008). Majority of the existing complexity evaluation models follow the 

latter philosophical stance (He et al., 2015) thereby failing to account for the risks that are 

considered important in the former epistemological framework.  

3.2 Inputs and Outputs of the ProCRiM based Models  

The main difference of the proposed process with the established process (SA, 2009) is its focus on 

the network of interacting project complexity drivers and project risks as shown in Fig 2. As an input 

to any model governed by the proposed process, the decision maker needs to identify not only the 



complexity drivers, risks and project objective but also to establish interdependencies between 

these factors and the associated strength of relationships.  

Considering the generic nature of project complexity elements introduced by Bosch-Rekveldt et al. 

(2011), we propose using these elements for establishing the complexity level of a project. However, 

instead of segregating these elements into distinct groups and categorising risks, we propose 

investigating the synergistic effect of multiple complexity elements and risks. These complexity 

elements are represented by rectangular nodes. We do not aim to evaluate the complexity by itself 

as it fails to identify the critical risks. Instead, we link the complexity elements (except the ones 

categorised as risks) proposed by Bosch-Rekveldt et al. (2011) to different associated risks which in 

turn affect the project objectives like the delivery time, cost, quality and so on. Both the risks and 

project objectives are represented by oval shaped nodes. Finally, the overall utility (diamond shaped 

node) is defined by the decision maker according to the relative importance of each project 

objective. All the chance nodes (risks and objectives) and complexity elements are assumed as 

binary variables.  

As an input, the decision maker also needs to identify potential risk mitigation strategies, 

corresponding cost and impact across different risks. A strategy or combination of strategies can 

have a positive correlation with a risk or multiple risks. The output of models following ProCRiM 

helps in identifying critical risks and optimal risk mitigation strategies. Furthermore, emerging risks 

can easily be added to the established network of interacting factors.  

3.3 BBNs 

BBN is a graphical framework for modelling uncertainty. BBNs have their background in statistics and 

artificial intelligence and were first introduced in the 1980s for dealing with uncertainty in 

knowledge-based systems (Sigurdsson et al., 2001). They have been successfully used in addressing 

problems related to a number of diverse specialties including reliability modelling, medical diagnosis, 

geographical information systems, and aviation safety management among others. For 



understanding the mechanics and modelling of BBNs, interested readers may consult Jensen and 

Nielsen (2007), Kjaerulff and Anders (2008).  

BBNs present a useful technique for capturing interaction between risk events and performance 

measures (Badurdeen et al., 2014). Another advantage of using BBNs for modelling risks is the ability 

of back propagation that helps in determining the probability of an event that may not be observed 

directly. They provide a clear graphical structure that most people find intuitive to understand. 

Besides, it becomes possible to conduct flexible inference based on partial observations, which 

allows for reasoning. Another important feature of using BBNs is to conduct what-if scenarios. There 

are certain problems associated with the use of BBNs: along with the increase in number of nodes 

representing supply chain risks, a considerable amount of data is required in populating the network 

with (conditional) probability values. Similarly, there are also computational challenges associated 

with the increase in the number of nodes. 

3.4 Modelling Approach 

The process for the development of our proposed framework is shown in Fig 3. The first stage of 

Problem Structuring involves identification of project complexity attributes (known at the project 

commencement stage) and objectives, risks, and development of the network structure followed by 

representing these as statistical variables. In the second stage of Instantiation, conditional 

probability values and utility values are specified for respective nodes. In the final stage of Inference, 

evidence in the form of project characteristics and risks is fed into the model and propagated in 

order to conduct sensitivity analysis. Finally, key risk factors are identified on the basis of detailed 

analysis and optimal mitigation strategies are planned at the commencement stage of the project. 

Fig 3. Flowchart for implementing ProCRiM using EUT and BBNs [adapted from Sigurdsson et al. 
(2001)] 

The opinion of experts (profiles shown in Fig 4) was sought on the potential efficacy of adopting 

ProCRiM to manage project complexity and project risks. Empirical research undertaken explored 

the current state of risk management practices within the construction industry, investigated the 



proposed modelling approach and attempted to identify the interdependencies between relevant 

project complexity elements (Bosch-Rekveldt et al., 2011) and risks (Zou et al., 2007) within 

construction projects.  

4. Empirical Research 

4.1 Description of Respondents 

We conducted a total of 13 semi-structured interviews with experts in the construction industry in 

order to understand the current practices of managing project complexity and the associated risks. 

Furthermore, we sought respondents’ opinion on the viability of ProCRiM and proposed modelling 

approach. All the respondents were selected on the basis of their experience in project risk 

management within the construction industry. Initial contact with the interviewees was established 

through an academic and industrial network of researchers and afterwards, the snowballing process 

(Sadler et al., 2010) was utilised to select suitable respondents. The qualifications and work 

experience of respondents are shown in Fig 4. The research was approved by the University of South 

Australia’s Human Research Ethics Committee and all the interviews were conducted during June 

and August of 2015. In order to obviate the chance of misrepresentation and loss of data, all the 

interviews were audio-taped with the permission of respondents. After the completion of 

interviews, data was internally validated and content analysis was performed for data reduction and 

concept identification. Subsequently, the transcripts and deduced themes were shared with the 

interviewees for validation.  

Fig 4. Profile of Respondents 

4.2 Findings 

In general, all the respondents agreed that risks are treated as independent factors within the 

construction industry and risk registers are used for identifying important risks where probability 

and impact values are associated with individual risks. Systemic interaction of risks is never 

considered either at the commencement stage of a project or within the life-cycle of a project. 



According to Respondent 10: ‘No, we do not see the link of interdependency between risks in the risk 

management process. … When you come to the industry, it is still challenging to implement the basic 

steps even in case of risk registers. The value of conducting comprehensive risk management process 

is not tangible and it is really difficult to gain the support from senior management’.  

As the risk identification is based on the unrealistic assumption of risks being independent, there is 

no possibility of assessing the systemicity of risks and therefore, risk mitigation strategies are not 

evaluated within an interdependent setting of risks and strategies. According to Respondent 9: ‘No, 

the current risk management techniques don’t capture the interdependency between risks. In most 

cases, risk management is very casually done and solutions are proposed and implemented on ad hoc 

basis’. It was confirmed by a number of respondents that project managers rely on their intuition and 

past experience in managing risks. Furthermore, the level and sophistication of risk management 

process varies with project complexity itself. According to Respondent 5: ‘Project managers take 

decisions on the basis of their gut feeling and experience. It is all firefighting. However, there is a 

marked difference between the techniques adopted in developed countries with those implemented in 

developing countries. But still, even in the case of projects undertaken in developed countries, 

interdependency modelling is not considered at all’. 

Most of the respondents confirmed that project complexity is evaluated at the commencement stage 

of projects. However, it was revealed that project complexity is merely confined to technical aspects 

whereas organisational and environmental constructs of complexity are ignored. According to 

Respondent 4: ‘The business as usual in project management narrows down the description, 

implication and effect of complexity into mere structural complication. The other aspects of 

complexity such as pace of construction, uniqueness of design/construction technique or material, 

uncertainty of decision making, socio-political scenario of host country/location of project, etc. are 

very conveniently overlooked’.  



ProCRiM and the proposed modelling approach were considered as an important tool for 

understanding the dynamic behaviour of risks. However, the main limitation of the proposed 

approach is the requirement of huge data that might not be readily available and is difficult to elicit. 

Regarding the efficacy of our proposed approach, Respondent 2 responded: ‘If this model is able to 

identify critical risks specific to the industry, it will give great insight to the project manager in terms 

of identifying the source of critical risks and considering control actions. We do focus on past projects 

in terms of identifying key risks but those risks are considered in isolation’. The major reasons for lack 

of interest in using interdependency modelling are limited knowledge/expertise of managers in using 

sophisticated tools, limited support from senior management and the difficulty in populating these 

models in case of limited data. According to Respondent 7: ‘… It’s partly because of higher data 

demand for such techniques and lack of awareness/training on the part of practitioners. These gaps 

can be bridged but lack of serious efforts in this direction stands out to be a major issue’.  

We had also included  project complexity elements except risks (Bosch-Rekveldt et al., 2011) and 

construction project risks (Zou et al., 2007) within the research tool that were presented to the 

respondents in the form of a matrix. Based on their responses, key complexity elements and project 

risks (selected by at least 7 respondents), and interdependencies (represented by shaded cells) were 

identified as shown in Table 1. Although the responses varied in relation to past experiences and 

general understanding of respondents, we could find some common themes emerging from the 

matrices. The main purpose of this exercise was not to identify a comprehensive list of key 

complexity elements and risks but to explore if the experts considered such interdependency to be 

important. It was revealed that there were certain complexity elements influencing a number of risks 

and similarly, key risks could be identified that were being influenced by a number of complexity 

elements. As our respondents were located in South Australia, they did not consider market 

condition and country related complexity elements to be relevant. Similarly, project size and cost 

were only considered important by two respondents as projects having higher cost and bigger size 

might not necessarily be classified as complex projects. 



Table 1. Selected project complexity elements and risks with associated interdependency (shaded 
cells identify interdependency between the row and column)  

5. Application of ProCRiM and Modelling Approach 

5.1 Application Setting 

In this section, we demonstrate the application of ProCRiM and the proposed modelling approach 

through an illustrative simulation study as shown in Fig 5. The model representing critical risks 

specific to a construction project is adapted from an existing model proposed by Eybpoosh et al. 

(2011) who used SEM for evaluating cost overruns. However, their model considered a single node 

for the project complexity and linked it to a single risk category and captured a single project 

objective (cost). One concern associated with this model is its generalisation to different types of 

construction projects. Even if it is assumed that the model will be able to prioritise risks 

systematically, it is not foreseen to deal with the risk treatment and risk monitoring. The model used 

here (as shown in Fig 5) includes a limited number of project complexity attributes and risks 

identified by the empirical research conducted (refer to Table 1) to help readers focus on the 

mechanics of approach. The main purpose of presenting this simulation study is not to generalise a 

model representing a comprehensive list of variables and their interdependencies applicable to any 

construction project as, even within the same industry, each project and relevant circumstances 

would drive the structure of the network and the strength of interconnected variables in a different 

manner. Rather, we aim to demonstrate how practitioners can implement ProCRiM within the 

context of their projects and adopt the proposed modelling approach to prioritise risks and risk 

mitigation strategies. 

Fig 5. Simulation model developed in GeNIe (2015) 

For this application, we consider eight project complexity elements as shown in Fig 5 and four 

project objectives, namely: timeliness; cost; quality; and market share. These objectives have been 

presented as negative counterparts in order to align these to the notion of risks. All risk factors and 

complexity elements have binary states of ‘True (T)’ or ‘False (F)’ and ‘Yes’ or ‘No’ respectively. For 



illustrative purposes, it is assumed that all objectives are equally important in the decision-maker’s 

utility function and all complexity elements except ‘Lack of experience with the involved team’, 

‘Political instability’ and ‘Susceptibility to natural disasters’ are each having the ‘Yes’ state. Expected 

utility is a probability-weighted average of the utility in the different states the network may be in. 

By engaging in risk mitigation, the probability of these states occurring changes, as does the value of 

the objectives. More generally, a utility function could capture different weights being assigned to 

different objectives, objectives may be evaluated in a non-linear way, and complementarities 

between objectives could be captured. Assumed conditional probability values represent the belief 

of experts and their past experience will help them to determine these values. The values reflect the 

efficacy of current risk mitigation strategies in dealing with the occurrence of different combinations 

of risks. If the already implemented strategies are very effective, the strength of interdependency 

between risks will be weak whereas ineffective strategies will yield higher values of these conditional 

probabilities. 

5.2 Application Results and Analysis 

Once the model was updated, the marginal probability values were evaluated as shown in Table 2. 

R3, R4, R6, R11 and R12 appear to have high likelihood of occurrence; however, the probability 

values alone do not help in identifying the critical risks. It is important to consider the strength of 

causal relationships and the relative importance of each risk factor in terms of improving the 

expected utility value. Keeping the overall utility node as the target node, we instantiated each risk 

factor to the two extreme states and registered the corresponding expected utility values. In order 

to identify key risk factors for further improvement, we calculated the percentage improvement in 

expected utility given complete mitigation of each risk factor in turn. Furthermore, we also 

calculated the percentage variation in the expected utility across two extreme states of each risk 

factor that represents its relative significance for monitoring.  

Table 2. Prioritisation of risks and selection of potential risk mitigation strategies 



The two risk measures for each risk are shown in Table 2. R6 appears to be the most important risk 

having major influence on the utility function once it is mitigated. Though its probability is 

comparable to R3, R11 and R14, it is substantially important because of the strong dependency with 

the utility node. R1 is the most critical risk in terms of its major impact on the utility function if it is 

realised. Therefore, the second risk measure helps in identifying critical risks for monitoring whereas 

the first risk measure prioritises risks for improving the overall expected utility value. The relative 

importance of project objectives will also influence the ranking of risks because of the change in 

relative importance of dependency relationships. 

Although prioritisation of risks is an important step of the risk management process, appropriate risk 

mitigation strategies can only be selected after considering holistic interaction of risks and 

strategies. We assume that the decision maker is considering implementation of cost-effective risk 

mitigation strategies out of the strategies identified in Table 2. Each strategy is represented by two 

states of ‘Yes’ or ‘No’ and its efficacy is represented by the strength of interdependency between the 

strategy and related risk(s). For the specific modelled project, we were able to evaluate the impact 

of various combinations of strategies on the overall utility as shown in Fig 6.  

Fig 6. Impact of different combinations of risk mitigation strategies on the overall utility 

Our model helped in identifying optimal combinations of strategies yielding the maximum 

percentage improvement in the overall utility for various overall mitigation costs represented by red 

coloured points. All blue coloured points represent combinations of strategies that are dominated or 

sub-optimal. It is interesting to observe that an increase in the cost of mitigation from 800 to 1000 

actually gives rise to a reduction in expected utility. This approach helps in differentiating optimal 

strategies (red coloured points) from dominated strategies (blue coloured points) for each given 

level of mitigation cost. It also helps the decision maker determine if investing in implementing 

strategies has a net benefit after considering the improvement in expected utility relative to the cost 

of mitigation. 



We also evaluated the impact of project characteristics on project objectives as shown in Fig 7. The 

projects having higher complexity level are more likely to result in cost overruns, however, the 

relationship is not linear as multiple project complexity elements and risks interact in non-linear and 

systemic manner. The variation of low market share with change in project characteristics is also 

shown in Fig 7. Use of innovative technology was modelled as an enabler of increasing the market 

share but at the same time, market share would be affected by the attributes of time overrun and 

quality issues. Therefore, it can be observed that there is a marked variation in the probability of low 

market share with respect to the change in project characteristics.  

Fig 7. Impact of project complexity on the project objectives 

Higher complexity level is not necessarily associated with higher probability value of low market 

share as market share is also influenced by the use of innovative technology. Researchers have also 

introduced the notion of evaluating not only risks but also opportunities within the risk management 

process (Hillson, 2002; Ward and Chapman, 2003). In this context, our proposed process takes into 

consideration the positive impact of high complexity (like newness of technology) on the project 

objectives (like market share) but at the same time, these innovative ventures necessitate 

implementing appropriate strategies to mitigate the resulting chains of risks.  

6. Discussion 

As the main aim of our research was to address three related questions, we discuss hereafter the 

implications of the research findings in order to explicitly address each question as follows: 

RQ1: How is the interdependency between project complexity and complexity induced risks 

associated with NPD in general and construction projects in particular treated in the literature? 

The existing frameworks within the literature of project complexity have focused on representing 

different dimensions of project complexity (Bosch-Rekveldt et al., 2011; Geraldi et al., 2011; Thomé 

et al., 2015). Although few studies focus on the nexus of project complexity, risk and performance 



(Carvalho and Rabechini Junior, 2015; Floricel et al., 2016; Thomé et al., 2015), no attempt has been 

made to integrate all stages of the risk management process. Generally, the scope of these studies is 

limited to the risk identification and/or risk analysis stage. Keeping in mind the comprehensive 

coverage of complexity attributes, we consider the framework developed by Bosch-Rekveldt et al. 

(2011) to be adaptable to any type of project and furthermore, their proposed complexity elements 

can be modelled as binary variables. However, instead of classifying the complexity elements and 

risks into technical, organisational and environmental categories and focusing on their independent 

evaluation, there is a need to capture systemic interaction across distinct categories. 

It is important to measure project complexity (Lu et al., 2015) but this is not sufficient to understand 

the impact of complexity on different risks and project objectives. There is not general consensus on 

whether risk is an element of complexity (Bosch-Rekveldt et al., 2011; Geraldi et al., 2011) or the two 

concepts are distinct (Saunders et al., 2015, 2016; Vidal and Marle, 2008). We argue that there is a 

problem with existing studies adopting any extreme stance. Project complexity evaluation models 

treat complexity and risk as distinct concepts (He et al., 2015; Qureshi and Kang, 2015) and although 

interdependency between complexity elements is captured in some studies like He et al. (2015), the 

influence of complexity on risk is not addressed. In other studies, researchers consider risk as an 

element of complexity and categorise complexity drivers and risks independently (Bosch-Rekveldt et 

al., 2011) whereas such an approach does not account for the ‘interdependency’ notion of the 

complexity-risk nexus. Even if robust risk management techniques are adopted (Boateng et al., 

2015), evaluating complexity and risk in isolation is sub-optimal in relation to modelling 

interdependency between complexity and risk. 

On the basis of the reviewed literature, we can deduce that the interdependency between 

complexity and risk has not been adequately captured in existing models. There is a need for 

bringing a paradigm shift towards appreciating the importance of exploring interdependency within 

the same categories of complexity elements and risks and across distinct categories as well. The 



philosophical debate on the concept of complexity and risk still goes on and the proposed approach 

brings a new paradigm that is to assess complexity and risk through the lens of interdependency 

modelling. ProCRiM attempts to contribute towards this new approach. 

RQ2: How can we develop a risk management process and an effective modelling approach for 

capturing interdependency between complexity and risk in order to facilitate the decision making 

process of prioritising risks and risk mitigation strategies at the commencement stage of a project? 

As the standard risk management process (SA, 2009) is well-established in construction project 

management (Wang, 2015), the interdependency between complexity and risk – lacking in this 

approach – is not considered by practitioners. In order to address this issue we propose the 

ProCRiM. The main focus of the proposed process is on the management of complexity and risk 

network. The decision maker needs to identify a network of interacting project complexity drivers 

and risks. As an input, the importance of project objectives must also be elicited from the decision 

maker. The network presents a holistic picture of interacting project complexity attributes, risks and 

project objectives. Managers can visualise interaction between different risks, appreciate 

propagation patterns through risk paths and locate key risks endangering the success of a project.  

The process also captures the decision maker’s personal preference of each project objective in the 

form of a utility function. EUT has been widely used in the literature of risk management (Aven, 

2015), however, very few studies have used the technique in the literature of project risk 

management. Therefore, there is a need to develop robust tools and models grounded in the 

framework of EUT to help practitioners prioritise risks and mitigation strategies. In contrast with the 

frequently used methods of AHP, ANP, FST and SEM to model project risks, the proposed technique 

of BBNs is efficient in integrating all stages of the risk management process and identifying not only 

critical risks but also optimal risk mitigation strategies. Modelling techniques other than BBNs are 

not robust enough to deal with the risk treatment and monitoring stages where optimal mitigation 

strategies are selected and new risks are identified respectively.  



The proposed process can bring a positive change in managing complex projects. Although our scope 

is limited to the commencement stage of the project, the process can be used throughout the 

project life-cycle. At the commencement stage, if the project manager is able to select adaptable 

strategies, these can be tailored in subsequent stages of the project. Such a continuous 

implementation of ProCRiM will help monitoring the state of risks and efficacy of risk mitigation 

strategies over the project life-cycle. Other methods and techniques can be explored that fit well 

with the framework of ProCRiM.  

RQ3: How is the interdependency between project complexity and risk managed in the construction 

industry? 

Existing empirical studies have focused on understanding the practices of managing complexity in 

large projects (Davies and Mackenzie, 2014; Koppenjan et al., 2011; Liu, 2015; Saunders et al., 2015), 

however, the current practices with regard to understanding and managing systemic and complex 

interaction of risks within the context of project complexity have not been investigated. Moreover, it 

is also important to explore whether practitioners consider the notion of interdependency between 

complexity and complexity driven risks in complex projects.  

Our empirical finding of risks being treated as independent factors is in accordance with the main 

finding of Taroun (2014) who conducted an extensive review of the literature in Construction Risk 

Management. The ranking of risks on a probability-impact matrix is being commonly used within 

construction projects because of the ease in developing and analysing such models (Shi et al., 2015); 

the main problem associated with using sophisticated models is the limited awareness and 

experience in handling such models. However, we believe that even if the comprehensive 

quantitative modelling approach may not be exclusively adopted within the risk management 

process, use of causal mapping (the qualitative part of BBNs) can provide an insight into identifying 

key interdependencies between risks and such practice can help managers identify risk paths instead 

of focusing on independent categories of risks. 



The empirical research presented here is original in terms of investigating risk management practices 

within the context of project complexity focusing on interdependency modelling. We were also able 

to validate the adaptability of the framework proposed by Bosch-Rekveldt et al. (2011) to the 

construction industry. Based on the complexity-risk matrix filled in by the respondents, it was 

confirmed that practitioners consider such interdependency to be vital in complex projects. 

However, we did not particularly focus on identifying critical complexity elements and risks as the 

aim of conducting empirical research was to explore the current practices in the industry with regard 

to management of project complexity and associated risks. Similarly, the activity of linking project 

complexity elements to risks was planned to establish the viability of the overall idea. We may not 

be able to generalise the results to other industries that make use of sophisticated risk management 

techniques/tools that influence project performance (Carvalho et al., 2015).  

7. Conclusions 

Long-term projects involving NPD often result in major delays and cost overruns. Through reviewing 

the literature on project complexity and interdependency modelling of risks in NPD in general and 

construction projects in particular, we have established a major research gap of establishing an 

integrated complexity and risk management process exploring interdependency modelling between 

project complexity attributes (known at the commencement stage), complexity driven risks and 

project objectives. We have proposed a project complexity and risk management process and 

modelling approach for capturing the holistic interaction between the mentioned factors within the 

theoretically grounded framework of EUT and BBNs that present a very useful tool not only for 

capturing causal relationships between uncertain variables but also for establishing the strength of 

these interdependencies.  

In order to investigate the current practices within the construction industry, we conducted 13 semi-

structured interviews with the experts in project risk management. Our findings confirmed that the 

risk management process implemented in the industry does not consider complex interaction 



between project complexity and risks and furthermore, project managers generally rely on their 

intuition and past experience in dealing with risks. Although project complexity is considered an 

important factor at the commencement stage, not all aspects of project complexity are included 

within the analysis. The experts considered the proposed process and modelling approach as an 

important contribution but they also identified challenges such as limited support from senior 

management and the requirement of populating such sophisticated models with data. 

We demonstrated the application of our approach through an illustrative application that gave an 

insight into understanding dynamics across risks. We used key risks and complexity elements that 

were identified by our interviewees. Two parameters were calculated for each risk signifying its 

relative importance for the utility node in terms of complete mitigation and the variation in the 

expected utility value corresponding to the two extreme states. The latter parameter helps in 

identifying risks for monitoring as the occurrence of low probability-high impact risks would have a 

significant impact on the entire network of interconnected risks. 

Overall, the contribution of this paper is three-fold: we have focused at the interface of broad fields 

and explored an important research theme that has received limited attention in the past; we have 

proposed a new process and an approach for modelling the interdependency between project 

complexity attributes, risks and project objectives that was further demonstrated through an 

illustrative application; and finally, we conducted empirical research to gain insight into the real 

practice of managing these complex interactions within the construction industry. In future, the 

proposed process will be validated in the context of different industries through case studies. 

Furthermore, empirical research will be conducted to investigate the best practices in managing 

complex interdependencies between project complexity and resulting risks. It will also be important 

to devise methods for reducing the effort in populating such models. Methods other than BBNs can 

be explored to implement the ProCRiM and investigate the trade-off between effort involved in 

developing the model and the precision of results.   
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Fig 1. Research focus and methodology 
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Fig 2. Project complexity and risk management (ProCRiM) with associated inputs and outputs
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Fig 3. Flowchart for implementing ProCRiM using EUT and BBNs [adapted from Sigurdsson et al. 
(2001)] 
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Fig 4. Profile of Respondents 
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Fig 5. Simulation model developed in GeNIe (2015) 

 

 

 

 

 

 

 

 

 

 

 



 

Fig 6. Impact of different combinations of risk mitigation strategies on the overall utility 
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Fig 7. Impact of project complexity on the project objectives 
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Table 1. Selected project complexity elements and risks with associated interdependency (shaded 
cells identify interdependency between the row and column) 

ID Project Complexity Element Category 

1 Lack of clarity and misalignment of goals Technical (T) 
2 Ambiguity in scope  T 
3 Strict quality requirements  T 
4 Ambiguity in technical methods  T 
5 Conflicting norms and standards  T 
6 Use of innovative technology T 
7 Lack of experience with technology  T 
8 Lack of experience with parties involved  Organisational (O) 
9 Multiple contracts O 

10 Number of stakeholders  and variety of perspectives Environmental (E) 
11 Unstable political situation or political influence  E 
12 High Level of competition E 

ID Project Risk  

1 Poor labour productivity O 
2 Poor labour availability/shortage of skilled labour O 
3 Defective design/quality problems T 
4 Engineering changes/design variations T 
5 Unwillingness to share information/lack of visibility E 
6 Delays in design and regulatory approvals T 
7 Delays in obtaining required raw materials quantity O 
8 Escalation in raw material price E 
9 Misalignment of interests/conflicts with stakeholders E 

10 Increase in energy prices E 
11 Contract disputes E 
12 Increase in labour cost E 
13 Supplier/subcontractors' default O 
14 Occurrence of dispute E 
15 Equipment shortage O 
16 Non-availability of experienced design personnel O 
17 Unavailability of sufficient managers and professionals O 
18 Low management competency of subcontractors/suppliers O 
19 Changes in project specifications T 
20 Delays/interruptions T/O/E 

 

Project 
Complexity 
Element ID 

Project Risk ID  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1                                         

2                                         

3                                         

4                                         

5                                         

6                                         

7                                         

8                                         

9                                         

10                                         

11                                         

12                                         



Table 2. Prioritisation of risks and selection of potential risk mitigation strategies 

ID Risk P(Ri=True) 

Risk measures 

Strategy 
ID 

Cost of 
Implementing 

Strategy 

% 
improvement 
in expected 

utility 

% variation 
in expected 

utility 

R1 
Contractor's lack of 

experience 
0.05 3.3 63.7 S1 200 

R2 Suppliers' default 0.2 0.8 3.5 S2 50 

R3 
Delays in design and 
regulatory approvals 

0.9 6.3 7 S3 150 

R4 Contract related problems 0.8 0.4 0.5 S4 100 
R5 Economic issues in country 0.1 0.5 5.4   
R6 Major design changes 0.99 50 50.5   

R7 
Delays in obtaining raw 

material 
0.36 1.5 4.3 S5 150 

R8 
Non-availability of local 

resources 
0.25 1.3 5.3 S6 100 

R9 Unexpected events 0.02 0.3 13.6   
R10 Increase in raw material price 0.27 1.3 4.7 S7 50 

R11 
Changes in project 

specifications 
0.95 0.4 0.4 S8 300 

R12 
Conflicts with project 

stakeholders 
0.85 0.6 0.7 

  

R13 Decrease in productivity 0.17 3.6 20.8   
R14 Delays/interruptions 0.98 10.8 11.1   
O1 Decrease in quality of work 0.33     

O2 
Low market 

share/reputational issues 
0.41 

    

O3 Time overruns 0.91     
O4 Cost overruns 0.69     

 


	Title Page.pdf
	Final Revised Manuscript

