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Abstract—The challenge of ballistic missiles classification is
getting greater importance in last years. In fact, since the anti-
missile defence systems have generally a limited number of
interceptors, it is important to distinguish between warheads and
confusing objects that the missile releases during its flight, in
order to maximize the interception success ratio. For this aim, a
novel micro-Doppler based classification technique is presented
in this paper characterized by the employment of Krawtchouk
moments. Since the evaluation of the latter requires a low
computational time, the proposed approach is suitable for real
time applications. Finally, a comparison with the 2-dimensional
Gabor filter based approach is described by testing both the
techniques on real radar data.

I. INTRODUCTION

The capability to recognize ballistic targets is an important
challenge which has appealed greater interest in the last
decades. In particular, since during the midcourse phase the
missiles are detectable more easily by the defence systems,
they release both warheads and some other objects with the
aim to confuse the interceptors. Thus they are more expensive
than the missiles, then they are available in a limited number
for the defence systems. Therefore, it is really important to
distinguish between warheads and confusing objects in order
to minimize the number of shots per hit and to maximize the
ammunition capabilities.

For the specific case of antiballistic missile system, the
interceptor are usually equipped with an OnBoard Computer
(OBC) to perform control, guidance, target data estimation,
mission sequencing and various other critical operations during
all the flight, from pre-launch to till impact [1]. However, all
these operations are made harder due to the high velocities of
the moving target and the interceptor which demands higher
data update rates from sensors, high frequent commands to
control system. For these reasons fast and low computational
classification algorithm is required to exploit in the best way
the available resource.

In order to recognize ballistic threats, the micro-Doppler
effect analysis, introduced in [2], and widely investigated in the
last years [3], may be employed to extract reliable information
for target recognition since warheads and confusing objects
exhibit different micro-motions during their ballistic trajectory.
In fact, while the warhead flight is characterized by precession
and nutation, the confusing objects just wobble because they

do not have any control phase motor. Analysing the acquired
radar signal, these different micro-motions lead to different
micro-Doppler signatures, as described in [4] by mathematical
model.

Several approaches have been proposed in the literature
to extract micro-Doppler features from ballistic missile radar
echo. In [5] a method of extracting micro-Doppler of narrow-
band and wideband signal has been proposed. The method in-
volves the autocorrelation in the time domain and the cepstrum
in the frequency domain to extract the period of micro-Doppler
variation. In [6] an algorithm for extracting micro-Doppler
based feature has been presented. Specifically, starting from
a radar signal model for spinning missile, the micro-Doppler
modulation frequency has been extracted by analysing the 2-D
DFT of a time-frequency distribution (TFD). In particular the
short time Fourier Transform (STFT) has been implemented
through a data-dependent optimal window length. In [7] the
smoothed pseudo Wigner-Ville distribution has been used
as high-resolution TFT to calculate micro-Doppler frequency
based on the individuation of signal’s spectral peaks. The
micro-Doppler signature has been used in [8] to extract feature
based on the pseudo-Zernike moments for target classification.
This approach has been also used successfully to recognize
ballistic threats in [9], in which other two different feature
extraction approaches are analysed: the 2D (2-dimensional)
Gabor filters based features [10] and the Average Cadence Ve-
locity Diagram (ACVD) based features. These three techniques
are based on the processing of the Cadence Velocity Diagram
(CVD) which represents the cadence of each signal frequency
component.

In this paper a novel feature extraction approach for bal-
listic target classification is presented based on Krawtchouk
(Kr) moments. The Kr-moments are widely used for image
processing in various applications like image reconstruction
[11], shape recognition [12] and face recognition [13] for
their some peculiar characteristics. In particular, since they
are discretely defined, they do not involve numerical approx-
imation as in the case of continuous orthogonal moments. In
this way discretization error does not exist and the amount of
resource required to store the polynomials is reduced thanks
to the recurrence relations and the symmetry properties of
Krawtchouk moments [11]. Moreover, the moments derived
from Krawtchouk polynomials benefit of scale, rotation and



translation invariant properties [11]. These characteristics, to-
gether with the capability to pre-compute the polynomials,
make this image moments reliable for real time target recog-
nition.

The Kr-moments based approach is compared with the
Gabor filter approach which outperforms the other techniques
proposed in [9]. The remainder of the paper is organized as
follows. Section II describes the relevant theory of the Kr-
moments. Section III deals with the classification algorithm
while in Section IV the effectiveness of the algorithm is
demonstrated on real data. Section V concludes the paper.

II. KRAWTCHOUK MOMENTS

The Krawtchouk moments of order r of an image I(x, y),
introduced in [11], are computed as the projection of the image
on a basis of orthogonal polynomials which are associated with
the binomial distribution. These are calculated as the product
of the classical Krawtchouk polynomials and a weight factor
to overcome the numerical stability problem as follows [11],
[12]

K̄r(x, p,N) = Kr(x, p,N)
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where x and n belonging to (0, 1, 2, . . . , N), N ∈ N, with N
the set of natural numbers, p a real number belonging to the
set (0, 1). Moreover, 2F1 is the Gauss hypergeometric function,
defined as
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while (a)k is the Pochhammer symbol given by

(a)k = a(a+ 1) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)
. (4)

Considering a 2D image I(x, y), the Kr-moments of order
(n,m) are defined as [12]

Knm =

Nx−1∑
x=0

Ny−1∑
y=0

K̄n(x, p1, Nx − 1)×

K̄m(y, p2, Ny − 1)I(x, y)

(5)

where Nx and Ny are the image dimensions along both the
axes. Since it is possible to write the image as a series
of weighted Krawtchouk polynomials weighted by the Kr-
moments, Knm, such as [11]

I(x, y) =

Nx−1∑
x=0

Ny−1∑
y=0

KnmK̄n(x, p1, Nx − 1)×

K̄m(y, p2, Ny − 1)

(6)

the Kr-moments are a synthetic way to represent the image
intensity function I(x, y).

III. FEATURE EXTRACTION ALGORITHM

In this section the micro-Doppler based classification al-
gorithm for ballistic threats is described. Figure 1 shows the
block diagram of the classification method in [9] with which
the proposed method shares the principal steps. The received

Figure 1: Block diagram of the proposed algorithm.

signal srx(n), n = 0, ..., N , with N the number of available
samples, is pre-processed before the extraction of the micro-
Doppler information. In particular, the first block comprises a
notch filtering, down-sampling and normalization with the aim
to make clearer the micro-Doppler signature. Then, the pre-
processed signal s̃rx(n) is used to evaluate the spectrogram
defined as the modulus of the STFT, as follows

χ(ν, k) =

∣∣∣∣∣
N−1∑
n=0

s̃rx(n)wh(n− k)e(−j2ν
n
N )

∣∣∣∣∣ ,
k = 0, · · · ,K − 1

(7)

where ν is the normalized frequency and wh(·) is the smooth-
ing window. Through the spectrogram it is possible to eval-
uate the signal frequency variations on time. It guarantees
robustness with respect to the cross-term interference which
characterizes the other common time-frequency distributions
(such as the Wigner-Ville distribution) and which may lead to
significant errors for the classification. The next step consists
in the extraction of the CVD by Fourier transforming the
spectrogram along each frequency bin [8], as follows

∆(ν, ε) =
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where ε is known as the cadence frequency. The CVD allows
to determine the cadence of each frequency component and the
maximum Doppler shift, which can be used as discriminant.
Moreover, the choice of the CVD guarantees the independence
with respect to the initial phase of moving objects instead of
the spectrogram. The parameters of the spectrogram are chosen
in order to CVD fit a square matrix. The CVD is considered
as a 2D image given as input to the feature extraction block
which depends on the feature extraction technique. At first,
the magnitude of the CVD is normalized in order to obtain a
matrix whose values belong to the set [0, 1] as follows

∆̄(ν, ε) =
∆(ν, ε)−min

ν,ε
∆(ν, ε)

max
ν,ε

[
∆(ν, ε)−min

ν,ε
∆(ν, ε)

] . (9)

Following, the normalized CVD is processed to extract a Q-
dimensional feature vector F = [F0, F1, · · · , FQ−1], which



hopefully identifies univocally each class. In the proposed
method, the nm-th feature is given by (5) replacing the general
image I(x, y) with ∆̄(ν, ε) as follows

Fnm =

Nν−1∑
ν=0

Nε−1∑
ε=0

K̄n(ν, p1, Nν − 1)×

K̄m(ε, p2, Nε − 1)∆̄(ν, ε)

(10)

Then, the feature vector F contains the moments for each
order up to (n,m) obtaining a vector dimension Q equal to
(n + 1)(m + 1). In order to not affect the classification with
polarized vector, F is normalized as follows

F̃ =
F − ηF
σF

(11)

where ηF and σF are the statistical mean and standard
deviation of the vector F , respectively.

Kr-moments are suitable for this application especially
due to their scale invariant property. In fact they guarantee
robustness with respect to the aspect angle which affects
the maximum Doppler shift which characterizes the CVD.
Moreover, since the CVD is characterized by vertical lines
whose positions depend on the micro-motions, the application
of Kr-moments may be efficient for their capability to extract
local characteristics from the image [14].

The classification performances of the extracted feature
vectors are evaluated using a modified version of the k-
Nearest Neighbour (kNN) classifier [9]. The choice of the
kNN classifier is justified for its capability to give as output
the scores for each class and for its low computational load.
However, it is modified by considering the hypersphere made
by the training vectors of each class. In this way, a tested
vector is classified as unknown in two cases: if any score of
the classes does not overcome the threshold, or if the tested
vector does not belong to any hypersphere. Considering the
covariance matrix Cc of the training vectors which belong to
the class c, the hypersphere radius of each class depends on
σc = tr (Cc). In particular, assuming that the feature vectors
are distributed uniformly around their mean vector, for all
the Monte Carlo runs, then rc = σc

√
12/2 [9]. However, the

selection of the best classifier is outside the scope of this paper.

IV. EXPERIMENTAL RESULTS

In this section the presented approach is tested on real
data realized by using a reproduction of targets of interest.
In particular two different shapes for the warhead have been
considered, approximated by a simple cone and a cone with
triangular fins at the base, and three for the confusing objects
released by the missile, approximated by a cylinder, a cone
and a sphere. The dimensions of the targets are comparable.
The height and the diameter of the conical and cylindrical
targets are 1 and 0.75 m, respectively, while the radius for
the spherical confusing object is 1 m. The base and the
height of the fins of the warheads instead are equal to 0.20
and 0.50 m, as shown in Figure 2a. Figure 3 shows an
example of the set up used for the acquisition of real data.
In particular, 10 acquisitions of 10 seconds have been made
by using a representative radar for each target and for each
possible couple of azimuth and elevation angles with values
[0◦, 45◦, 90◦]. Moreover, in order to simulate the different
movements of the warheads and the confusing objects it has

(a) Warhead.

(b) Confusing Object.

Figure 2: Model for the targets.

been used a ST robotic manipulator R-17 [15] (in the blue
square in Figure 3) with an added rotor motor.

A. Results

The targets of interest are divided in two classes: the
Warhead class, which comprises two sub-classes, one for
warheads without the fins and the other for those with fins,
and the Confusing Object class, composed of three sub-classes,
each of them for one of the three different considered shapes.

The classification performance are evaluated in terms of
three probability: the Probability of correct Classification
(PC), representing the capability to distinguish among the two
classes, Warhead and Confusing Objects; the Probability of
correct Recognition (PR), which represents the capability to
identify the actual shape of targets within the two principal
classes; the Unknown Probability (PU ) given by the ratio of the
number of tested vector for which the classifier does not take
a decision (as explained in Section III) and the total number
of them. In particular a Monte Carlo approach has been used
to evaluate the mean values of the three figures of merit over
500 independent runs, in which all the available signals have
been divided randomly in 70% used for training and 30% for
testing.

Both the Kr-moments and the Gabor filter based approach
are tested on varying the observation time considering three
values which are 10, 5 and 2 seconds, respectively, and on
varying the feature vector dimension. Moreover, assuming that
the noise is negligible for the acquired signals in a controlled
environment, the analysis on the SNR is conducted by adding
white Gaussian noise to the real data.

Figures 4b and 4a show the performances of both two
methods in terms of PC and PR on varying Q, and for
a SNR of 0 dB. It is clear that the performance generally
improves by increasing the observation time and the number
of features. In particular, observing Figure 4a which shows



Figure 3: Experiment set up.

the Kr-moments approach performance, it is noted that the
gap between PC and PR becomes negligible by increasing
Q for signal duration of 10 and 5 seconds. However, PC for
signal duration of 2 seconds is still suitable being close to
0.95. From Figure 4b instead, it is noted that also for Gabor
filter approach considering signal duration of 5 and 10 seconds
the gap between the two probability is negligible reaching
values greater than 0.98 for all Q > 9. However, even if the
Gabor filter approach generally outperforms the Kr-moments
one, the latter guarantees satisfactory values of PC and PR,
which are greater than 0.95 for highest considered values of
Q and observation time.

Figures 5b and 5a show the performances of both the
methods in terms of PC and PR on varying the SNR, and
for Q = 121. As the two figures show, the performances for
both the approaches are independent of the SNR for signal
duration of 5 and 10 seconds and SNR greater than −5 dB.
Figure 6 shows the average running time to extract the feature
from the normalized CVD for both the two methods. It is

(a) Kr-moments based approach, SNR= 0 dB.

(b) Gabor Filter based approach, SNR = 0 dB.

Figure 4: Probabilities of correct Classification, PC , and cor-
rect Recognition, PR, versus the dimension of the feature
vector Q and for several signal’s duration; SNR = 0 dB.

noted that, while for the Gabor filter approach the running
time increases as the feature vector dimension increases, for
the Kr-moments approach it does not depend on Q. Moreover,
the running time for Kr-moments is always smaller than for
the Gabor filter features of an order of magnitude between
2 and 4. For this reason, the Kr-moments are more suitable
for real time applications or for OBC of interceptor thanks to
their lower amount of required resources and elaboration time
combine to satisfactory capability to recognize real threats.

V. CONCLUSION

In this paper a novel technique based on the Krawtchouk
moments for radar micro-Doppler classification of ballistic
threats have been presented. The described approach is com-
pared with the Gabor filter one since they both share the
principal steps of the framework. In particular, both the ap-



(a) Kr-moments based approach, Q = 121.

(b) Gabor Filter based approach, Q = 121.

Figure 5: Probabilities of correct Classification, PC , and cor-
rect Recognition, PR, versus the SNR and for several signal’s
duration; Q = 121.

proaches are based on the extraction of reliable information
from the normalized CVD to discriminate between warheads
and interference factors released by the missile to confuse the
defence system. The effectiveness of proposed approach is
tested on real micro-Doppler radar data, obtained by acquiring
signals scattered by replicas of the targets of interest on
varying both the elevation and the azimuth angles using a
representative radar. The results have shown that both the two
approaches generally allow to discriminate between warheads
and confusing objects with a satisfactory degree of correct clas-
sification. Moreover, the new approach based on Kr-moments
guarantees a very low average running time to evaluate the
features which makes it suitable for real time applications such
as for the OBC of interceptor.

Figure 6: Average running time to evaluate Gabor filters
features (solid lines) and Kr-moments features (dash lines)
versus the feature vector length and for several observation
time durations.
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