
Conflation Confers Concurrency

Robert Atkey2, Sam Lindley1, and J. Garrett Morris1

1 The University of Edinburgh
{Sam.Lindley,Garrett.Morris}@ed.ac.uk

2 University of Strathclyde
Robert.Atkey@strath.ac.uk

Abstract. Session types provide a static guarantee that concurrent pro-
grams respect communication protocols. Recent work has explored a
correspondence between proof rules and cut reduction in linear logic
and typing and evaluation of process calculi. This paper considers two
approaches to extend logically-founded process calculi. First, we con-
sider extensions of the process calculus to more closely resemble π-
calculus. Second, inspired by denotational models of process calculi, we
consider conflating dual types. Most interestingly, we observe that these
approaches coincide: conflating the multiplicatives (⊗ and `) allows pro-
cesses to share multiple channels; conflating the additives (⊕ and &) pro-
vides nondeterminism; and conflating the exponentials (! and ?) yields
access points, a rendezvous mechanism for initiating session typed com-
munication. Access points are particularly expressive: for example, they
are sufficient to encode concurrent state and general recursion.

1 Introduction

The Curry-Howard correspondence, formulated by Howard [1980] and building
on ideas of Curry [1934] and Tait [1965], observes a remarkable correspondence
between (propositional) intuitionistic logic and the λ-calculus. The correspon-
dence identifies logical propositions with λ-calculus types, proofs with well-typed
terms, and cut elimination with reduction. The correspondence is fruitful from
the perspectives of both logic and programming languages [Wadler, 2015].

Recent work, initiated by Caires and Pfenning [2010], attempts a similar
identification between linear logic and process calculi. In this case, propositions
of (intuitionistic) linear logic are identified with session types, a mechanism for
typing interacting processes originally proposed by Honda [1993]. Proofs of those
propositions are identified with π-calculus processes, and cut elimination in linear
logic with π-calculus reduction. However, this identification is not as satisfying as
that for intuitionistic logic and the λ-calculus. In particular, numerous features
of the π-calculus are excluded by the resulting session-typing discipline, and
there is not yet an approach to restore them. Philip Wadler posed the following
question at an invited talk by Frank Pfenning at the TLDI Workshop in January
2012 [paraphrased]:

Simply-typed λ-calculus has a propositions as types interpretation as
intuitionistic logic, but has limited expressiveness. By adding a fix point
operator it becomes Turing-complete. Similarly, Caires and Pfenning’s
calculus has a propositions as types interpretation as intuitionistic linear
logic. Is there a feature, analogous to the fix point operator, that we can
add to Caires and Pfenning’s calculus in order to recover the full power
of π-calculus?

Wadler has since reposed the same question, but with respect to his classical
variant of Caires and Pfenning’s system (Wadler [2014]).

This paper describes an approach to more expressive, logically founded pro-
cess calculi, inspired by Wadler’s question. We begin by considering extensions of
Wadler’s CP calculus that increase its expressiveness—at the cost of properties
such as deadlock freedom—while retaining session fidelity (well-typed communi-
cation). To do so, we explore two approaches. On the one hand, we directly inves-
tigate the inclusion of π-calculus terms excluded by CP’s type system, bringing
CP more in line with the term calculi in most existing presentations of ses-
sion types. Doing so requires the addition of new typing rules, and we consider
their interpretation as proof rules and their logical consequences. On the other
hand, inspired by the semantics of the π-calculus described by Abramsky et al.
[1996], we attempt to conflate the various dual types. Our primary contribu-
tion is the observation that these disparate approaches converge: the new proof
rules allow us to show bi-implications between dual types, while assuming such
bi-implications make the new logical rules derivable.

The paper proceeds as follows. We begin with a short introduction to ses-
sion types and their connection to linear logic and its semantics (§2). We recall
Wadler’s CP calculus (§3). We then describe the conflation of the various dual
types and their consequences (§4). Finally, we conclude with a discussion of
future work and open questions (§5).

2 Background

Unlike the propositions of intuitionistic logic, linear logic propositions are finite
resources—the assumptions of a proof must each be used exactly once in the
course of the proof. When he introduced linear logic, Girard [1987] suggested
that it might be suited to reasoning about parallelism. Abramsky [1992] and
Bellin and Scott [1994] give embeddings of linear logic proofs in π-calculus, and
show that cut reduction is simulated by π-calculus reduction. Their work is not
intended to provide a type system for π-calculus: there are many processes which
are not the image of some proof.

Session types were originally introduced by Honda [1993] as a type system for
π-calculus-like communicating processes. The key constructors of session types
include input and output, characterising the exchange of data, and internal and
external choice, characterising branching evaluation. Honda’s typing discipline
assures session fidelity, meaning that at each synchronisation the communicating

processes agree on the types of values exchanged. His system is extended to π-
calculus-like processes by Takeuchi et al. [1994] and Honda et al. [1998]. Session
typing relies on a substructural type system to assure session fidelity; however,
Honda did not relate his types to the propositions of linear logic, and he relies on
a self-dual type for closed channels. Kobayashi et al. [1996] give a linear, typed
polyadic π-calculus, in which each channel must be used exactly once, and show
how it can be used to encode serial uses, as in session types; they do not address
choice or nondeterminism.

Recent work by Caires and Pfenning [2010] and Wadler [2014], among others,
has developed a propositions-as-types correspondence between session typing
and linear logic. Session types are interpreted via the connectives of linear logic—
for example, the tensor product A⊗B characterises processes that output values
of type A, and then proceed as B . Caires and Pfenning [2010] interpret the proof
rules for intuitionistic linear logic as a type system for the π-calculus; they then
show that the reduction steps for well-typed π-calculus terms correspond to the
cut elimination rules for intuitionistic linear logic. Wadler [2014] adapts their
approach to classical linear logic, emphasising the role of duality in typing; in his
system, the semantics of terms is given directly by the cut elimination rules. As
a consequence of their logical connections, both systems enjoy deadlock freedom,
termination, and a lack of nondeterministic behaviour; however, both systems
also impose additional limitations on the underlying process calculus, and differ
in some ways from traditional presentations of session types.

Abramsky et al. [1996] propose an alternative approach to typing communi-
cating processes. Their approach is based on a denotational model for processes,
called interaction categories. Their canonical interaction category, called SCons
is sufficient to interpret linear logic; unusually, the interpretations of the dual
connectives are conflated. SCons is quite expressive: it can faithfully interpret
all of Milner’s synchronous CCS calculus. However, we are not aware of any
work extending interaction categories to interpret channel-passing calculi, such
as π-calculus or the calculi of Caires and Pfenning and Wadler.

There have been several type systems for deadlock-free processes not de-
rived from linear logic, including those of Kobayashi [2006], Padovani [2014],
and Giachino et al. [2014]. These systems all include composition of processes
sharing multiple channels, but at the cost of additional type-system complexity.
Dardha and Pérez [2015] compare Kobayashi’s approach with the linear-logic
based approaches of Caires, Pfenning, and Wadler. They observe that the lin-
ear logic-based approaches coincide with that of Kobayashi when restricted to
one shared channel between processes. They also give a rewriting procedure from
Kobayashi-typable processes with multiple shared channels to processes with one
shared channel, and show an operational correspondence between the original
and rewritten processes.

Some of our results above are reminiscent of results obtained in category-
theoretic settings closely related to linear logic. Fiore [2007] shows that conflation
of products and coproducts into biproducts is equivalent to the existence of a
monoidal structure on morphisms; we will attempt a similar conflation (§4.3)

to give a logical interpretation of nondeterminism. Compact closed categories
provide a model of classical linear logic in which ⊗ and ` are identified; we will
consider a similar conflation as well (§4.2). However, we do not yet understand
the exact relationship between compact closed categories, and our system with
the multicut rule. In compact closed categories it is known that finite products
are automatically biproducts Houston [2008], and it would be interesting to see
how his proof translates to a logical setting.

Finally, there have been several attempts to relate π-calculus to proof nets,
one approach to the semantics of linear logic. Honda and Laurent [2010] demon-
strate a two-way correspondence between proof nets for polarised linear logic
and a typed π-calculus previous presented by Honda et al. [2004]. The type sys-
tem used for the π-calculus in this work is rather restrictive, however: it ensures
that all processes are deterministic and effectively sequential, removing much of
the expressivity of the π-calculus. Ehrhard and Laurent [2010] give a transla-
tion from finitary π-calculus (i.e., π-calculus without replication) into differential
interaction nets. Differential interaction nets are an untyped formalism for repre-
senting computation, based on proof nets for differential linear logic. Differential
linear logic is an extension of linear logic that, amongst other features adds a
form of nondeterminism. It is this nondeterminism that Ehrhard and Laurent use
to model the π-calculus. However, Mazza [2015] argues forcefully that Ehrhard
and Laurent’s translation incorrectly models the nondeterminism present in the
π-calculus. In short, Mazza shows that differential proof nets can only model “lo-
calised” nondeterminism—nondeterminism that can be resolved via a local coin
flip—and not the global nondeterminism that arises when two processes “race”
to communicate with another process. Mazza makes the following provocative
statement:

However, although linear logic has kept providing, even in recent
times, useful tools for ensuring properties of process algebras, especially
via type systems (Kobayashi et al., 1999; Yoshida et al., 2004; Caires and
Pfenning, 2010; Honda and Laurent, 2010), all further investigations have
failed to bring any deep logical insight into concurrency theory, in the
sense that no concurrent primitive has found a convincing counterpart
in linear logic, or anything even remotely resembling the perfect corre-
spondence between functional languages and intuitionistic logic. In our
opinion, we must simply accept that linear logic is not the right frame-
work for carrying out Abramsky’s “proofs as processes” program (which,
in fact, more than 20 years after its inception has yet to see a satisfactory
completion).

We will show that, while not entirely answering Mazza’s critique, our identifica-
tions provide some logical justification for π-calculus-like features.

3 Classical Linear Logic and the Process Calculus CP

We begin by reviewing Wadler’s CP calculus [Wadler, 2014], its typing, and its
semantics. For simplicity, we restrict ourselves to the propositional fragment of
CP, omitting second-order existential and universal quantification.

3.1 Types and Duality

The types of the CP calculus are built from the multiplicative, additive, and
exponential propositional connectives of Girard’s classical linear logic (CLL).

Types A,B ::= A⊗ B | A ` B | 1 | ⊥ | A⊕ B | A & B | 0 | > | !A | ?A

Wadler’s contribution with the CP calculus was to give the logical connectives
of CLL an explicit reading in terms of session types. As is standard with session
typing, CP types denote the types of channel end points. The connectives come in
dual pairs, indicating complementary obligations for each end point of a channel.
The tensor connective A⊗B means output A and then behave like B ; and dually,
par A ` B means input A and then behave like B . The unit of ⊗ is 1, empty
output; dually, the unit of ` is ⊥, empty input. Internal choice A ⊕ B means
make a choice between A and B ; dually, external choice A & B means accept a
choice of A or B . Replication !A means produce an arbitrary number of copies
of A; dually, query ?A means consume a copy of A.

The dual relationships between ⊗ and `, 1 and ⊥, ⊕ and &, and ! and ? are
formalised in the duality operation −⊥, which takes each type to its dual.

(A⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥

1⊥ = ⊥
⊥⊥ = 1

(A⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥

>⊥ = 0
0⊥ = >

(!A)⊥ = ?(A⊥)
(?A)⊥ = !(A⊥)

Example: Sending and receiving bits. CP is a rather low-level calculus. The mul-
tiplicative fragment (⊗ and `) handles only sending and receiving of channels,
on which data may be subsequently transmitted. The only actual data that may
be transmitted between processes are single bits, which take the form of a choice
between a pair of sessions. Transmission of a single bit is represented by internal
choice between two empty outputs.

Bool = 1⊕ 1

Dually, receiving a single bit is represented by an external choice between two
empty inputs.

Bool⊥ = ⊥&⊥

The other propositional connectives of CLL can now be used to build more
complex specifications. For example, we can write down the type of a server

that offers a choice of a binary operation on booleans (single bits) and a unary
operation on booleans, arbitrarily many times.

Server = !((Bool⊥ ` Bool⊥ ` Bool ⊗ 1) & (Bool⊥ ` Bool ⊗ 1))

The outer ! indicates that an implementation of this type is obliged to offer
the server as many times as a client requires. The inner part of the type is a
client-choice, indicated by the external choice (&), between the two operations.
The left-hand choice Bool⊥`Bool⊥`Bool ⊗ 1 can be read as “the server must
input two booleans, output a boolean, and then signal the end of the session”.
The right-hand choice is similar, but only specifies the input of a single boolean
input.

A compatible client type is obtained by taking the dual of the Server type.

Client = Server⊥ = ?((Bool ⊗ Bool ⊗ Bool⊥ `⊥)⊕ (Bool ⊗ Bool⊥ `⊥))

Dually to the server’s obligations, the outer ? indicates that the client may
make as many uses of this session as it desires. The inner part of the type is an
internal choice (⊕), indicating that the implementation of this type must make a
choice between the two services. The two choices then describe the same pattern
as the server, but from the point of view of the client. The left-hand choice
Bool ⊗ Bool ⊗ Bool⊥ `⊥ can be read as “the client must output two booleans,
input a boolean, and then signal the end of the session”. The right-hand choice
is similar, but only specifies the output of a single boolean.

3.2 Terms and Typing

The terms of CP are given by the following grammar.

Terms P ,Q ::= x ↔ y | νy (P | Q) | x (y).P | x [y].(P | Q) | !x (y).P | ?x [y].P
| x [ini].P | case x .{P ; Q} | x ().P | x [].0 | case x .{}

Figure 1 gives the typing rules of CP. The typing judgement is of the form P ` Γ ,
where P is a CP process term, and Γ is a channel typing environment. In rule
(Bang), ?Γ denotes a context Γ in which all types are of the form ?A for some
type A. Note that CP’s typing rules implicitly rebind identifiers: for example, in
the hypothesis of the rule for `, x identifies a proof of B , while in the conclusion
it identifies a proof of A ` B .

CP includes two rules that are logically derivable: the axiom rule, which is in-
terpreted as channel forwarding, and the cut rule, which is interpreted as process
composition. Two of CP’s terms differ from standard π-calculus terms. The first
is composition—rather than having distinct name restriction and composition
operators, CP provides one combined operator. This syntactically captures the
restriction that composed processes must share exactly one channel. The second
is output: the CP term x [y].(P | Q) includes output, composition, and name
restriction (the name y designates a new channel, bound in P). Finally, note
that CP includes only replicated input, not arbitrary replicated processes.

Typing

Axiom

x ↔ w ` x : A,w : A⊥

Cut
P ` Γ, x : A Q ` ∆, x : A⊥

νx (P | Q) ` Γ,∆

One

x [].0 ` x : 1

Tensor
P ` Γ, y : A Q ` ∆, x : B

x [y].(P | Q) ` Γ,∆, x : A⊗ B

Par
P ` Γ, y : A, x : B

x (y).P ` Γ, x : A` B

Bot
P ` Γ

x ().P ` Γ, x : ⊥

Plus
P ` Γ, x : Ai

x [ini].P ` Γ, x : A1 ⊕A2

With
P ` Γ, x : A Q ` Γ, x : B

case x .{P ;Q} ` Γ, x : A & B

Top

case x .{} ` Γ, x : >

Bang
P ` ?Γ, y : A

!x (y).P ` ?Γ, x : !A

Query

P ` Γ, y : A

?x [y].P ` Γ, x : ?A

Weaken?
P ` Γ

P ` Γ, x : ?A

Contract?
P ` Γ, y : ?A, z : ?A

P{x/y , x/z} ` Γ, x : ?A

Fig. 1: CP Typing

A simpler send. The CP rule Tensor is appealing because if one erases the
terms it is exactly the classical linear logic rule for tensor. However, this corre-
spondence comes at a price. Operationally, the process x [y].(P | Q) does three
things: it introduces a fresh variable y , it sends y to a freshly spawned process
P , and in parallel it continues as process Q . Fortunately, we can straightfor-
wardly define the operation that sends a free variable along a channel as syntactic
sugar (Lindley and Morris [2015] discuss this in more detail).

x 〈y〉.P def
= x [z].(y ↔ z | P)

Example: Sending and receiving bits. As mentioned above, CP is quite low-level,
so we use some syntactic sugar for sending and receiving bits.

x [0].P
def
= x [y].(y [in1].y [].0 | P)

x [1].P
def
= x [y].(y [in2].y [].0 | P)

case p.{0 7→ P ; 1 7→ Q} def
= case p.{p().P ; p().Q}

Let us define a logic server process P ` x : Server , in which the binary operation
is “and”, and the unary operation is “not”.

P = !x (y).case y .{y(p).y(q).
case p.{0 7→ case q .{0 7→ y [0].y [].0; 1 7→ y [0].y [].0};

1 7→ case q .{0 7→ y [0].y [].0; 1 7→ y [1].y [].0}};
y(p).
case p.{0 7→ y [1].y [].0; 1 7→ y [0].y [].0}}

This process operates over replicated channel x , accepting a channel y . A client
process communicating along the other end of x will begin by choosing between
the “and” and “not” operations. If “and” is requested, then two bits (p and q)
are received along y , and their logical conjunction is sent back along y . If “not”
is requested, then a single bit (p) is received along y , and its logical negation is
sent back along y .

We now define a client process Q that uses P to compute “not (p and q)”,
using the result to choose between two processes P0 and P1 as continuations.

Q = ?x [y].y [in1].y〈p〉.y〈q〉.y(z).y().
?x [y].y [in2].y〈z 〉.y(r).y().
case r .{0 7→ P0; 1 7→ P1}

The process Q connects to P twice using channel x , selecting the “and” opera-
tion, and then the “not” operation. We have that Q ` p : Bool⊥, q : Bool⊥, x :
Client , ∆ whenever P0 ` ∆ and P1 ` ∆.

3.3 Semantics via Cut Reduction

The semantics of CP terms are given by cut reduction, as shown in Figure 2.
We write fv(P) for the free names of process P . Terms are identified up to
structural congruence ≡ (as name restriction and composition are combined
into one form, composition is not always associative). We write −→C for the
cut reduction relation and −→CC for the commuting conversion relation. We
denote sequential composition of relations by juxtaposition. We write R∗ for the
transitive reflexive closure and R? for the reflexive closure of relation R.

The majority of the cut reduction rules correspond closely to synchronous
reductions in π-calculus—for example, the reduction of & against ⊕ corresponds
to the synchronisation of an internal and external choice. The rule for reduction
of ` against ⊗ is more complex than synchronisation of input and output in
π-calculus, as it must also manipulate the implicit name restriction and parallel
composition in the output term. We deviate slightly from Wadler’s presenta-
tion in that substitution and duplication and discarding of replicated processes
happens in the structural congruence rules for weakening and contraction and
not as part of the rule for dereliction. These choices ensure that reduction only
concerns interactions between dual prefixes and other non-intensional behaviour
is handled by the structural congruence.

Structural congruence

x ↔ w ≡ w ↔ x
νx (w ↔ x | P) ≡ P [w/x]

νx (P | Q) ≡ νx (Q | P)
νx (P | νy (Q | R)) ≡ νy (νx (P | Q) | R), if x 6∈ fv(R)
νx (!x (y).P | Q) ≡ Q , x /∈ fv(Q)

νx (!x (y).P | Q{x/z}) ≡ νx (!x (y).P | νz (!z (y).P | Q))

Primary cut reduction rules

νx (x [].0 | x ().P) −→C P
νx (x [y].(P | Q) | x (y).R) −→C νx (Q | νy (P | R))

νx (x [ini].P | case x .{Q1;Q2}) −→C νx (P | Qi)
νx (!x (y).P | ?x [y].Q) −→C νy (P | Q), if x /∈ fv(Q)

P −→C P ′

νx (P | Q) −→C νx (P ′ | Q)

Commuting conversions

νz (x [y].(P | Q) | R) −→CC x [y].(νz (P | R) | Q), if z 6∈ fv(Q)
νz (x [y].(P | Q) | R) −→CC x [y].(P | νz (Q | R)), if z 6∈ fv(P)

νz (x (y).P | Q) −→CC x (y).νz (P | Q)
νz (x ().P | Q) −→CC x ().νz (P | Q)

νz (x [ini].P | Q) −→CC x [ini].νz (P | Q)
νz (case x .{P ;Q} | R) −→CC case x .{νz (P | R); νz (Q | R)}

νz (case x .{} | Q) −→CC case x .{}
νz (!x (y).P | Q) −→CC !x (y).νz (P | Q)
νz (?x [y].P | Q) −→CC ?x [y].νz (P | Q)

Fig. 2: CP Congruences and Cut Reduction

Theorem 1 (Preservation). The relations ≡, −→C, and −→CC preserve well-
typing: if P ` Γ then P ≡ Q implies Q ` Γ , P −→C Q implies Q ` Γ , and
P −→CC Q implies Q ` Γ .

Just as cut elimination in logic ensures that any proof may be transformed
into an equivalent cut-free proof, the reduction rules of CP transform any term
into a term blocked on external communication—that is to say, if P ` Γ , then
P (≡−→C)∗(≡−→CC)? P ′ where P ′ 6= νx (Q | Q ′) for any x ,Q ,Q ′. The op-
tional final commuting conversion plays a crucial role in this transformation,
moving any remaining internal communication after some external communica-
tion (precluding deadlock). Note, however, that commuting conversions do not
correspond to computational steps (i.e., any reduction rule in π-calculus).

Example: Sending and receiving bits. Recall that, under the assumption of two
processes P0 ` ∆ and P1 ` ∆, we have P ` x : Server and Q ` p : Bool⊥, q :
Bool⊥, x : Client , ∆. In order to connect the client and server, we bind x to the
replicated channel they communicate along: PQ = νx (P | Q). We can set the
values of the bits p and q by placing further processes in parallel with PQ , which
allows reduction. For instance,

νp (p[1] | νq (q [1] | PQ)) −→∗C P0

and:
νp (p[0] | νq (q [1] | PQ)) −→∗C P1

Properties of cut reduction. Unsurprisingly, being a term calculus for classical
linear logic, CP is well-behaved. CP cut reduction is terminating, CP does not
admit deadlocks, and CP is deterministic.

Theorem 2 (Termination). The relation −→C is strongly-normalising mod-
ulo ≡: if P ` Γ , then there are no infinite ≡−→C reduction sequences starting
from P.

Theorem 3 (Deadlock-freedom). If P ` Γ , then there exist P ′,Q such that
P (≡−→C)∗ P ′ and P (≡−→CC)? Q, and Q is not a cut.

Theorem 4 (Determinism). The relation −→C is confluent modulo ≡: if
P ` Γ , P (≡−→C)∗Q1 and P (≡−→C)∗Q2, then there exist R1,R2 such that
Q1 (≡−→C)∗R1, Q2 (≡−→C)∗R2, and R1 ≡ R2.

All of these theorems follow from well known results about classical linear logic.

4 Conflating Duals

In light of the results above about CP’s semantics, it would seem that CP is not
a particularly expressive calculus. In particular, nondeterminism is frequently
seen as a defining characteristic of concurrency, and the guaranteed deterministic

behaviour of CP (Theorem 4) would appear to indicate that it is not possible to
express much interesting behaviour in CP.

One property of CP that appears to be essential for its behavioural properties
is its strict adherence to duality. Each connective has an accompanying dual, and
the fact that communicating processes must match dual connectives precisely
means that “nothing goes wrong”, in the sense of non-termination, deadlock or
nondeterministic behaviour. Observing that this precise matching makes CP a
relatively inexpressive calculus, we now systematically investigate relaxation of
the strict duality of CP to see whether or not it yields greater expressivity by
conflating each of the dual pairs of connectives in turn.

How to conflate duals. There are choices over exactly how to conflate duals in
a proof theory. In a standard session-typed calculus, for instance, one literally
replaces 1 and ⊥ with a single type (usually called end). However, in order to keep
our modified calculus conservative with respect to the existing one, we initially
take a different approach following Wadler [2014], who considers extensions of
CP in which certain maps between duals are derivable. Logically, we can say that
we have conflated propositions (session types) A and B if there exist processes
PAB and PBA such that PAB ` x : A (B and PBA ` x : B (A (where
A (B = A⊥`B), which amounts to giving back-and-forth translations between
A and B . In this paper, we do not necessarily require that these translations
be mutually inverse in any way, though we usually expect this to be the case.
Our general pattern will be to add some feature (parallelism, multi-channel cut,
nondeterminism, access points) and then observe that this is logically equivalent
to conflation of a dual pair.

As indicated above, we define A (B
def
= A⊥`B . Furthermore, ` is invertible

P ` z : A ` B

w ↔ x ` w : A⊥, x : A y ↔ z ` y : B , z : B⊥

` z : A⊥ ⊗ B⊥, x : A, y : B

νz (P | z [w].(w ↔ x | y ↔ z)) ` x : A, y : B

so without loss of generality we shall seek PAB and PBA such that PAB ` x :
A⊥, y : B and PBA ` x : B⊥, y : A and we shall systematically treat a proof
PAB ` x : A⊥, y : B as a proof of A (B .

4.1 Concurrency without Communication (1 and ⊥)

The first pair of connectives we conflate are 1 and ⊥. Conflation of this pair corre-
sponds to the addition of communication-free concurrency and inactive processes
to CP, via the Mix and 0-Mix rules.

The Mix rule allows processes P and Q to be composed in parallel P | Q
without creating a communication channel between them.

Mix
P ` Γ Q ` ∆
P | Q ` Γ,∆

The unit of Mix is the inactive process 0.

0-Mix

0 `

Using Mix we can prove ⊥(1.

x [].0 ` x : 1 y [].0 ` y : 1

x [].0 | y [].0 ` x : 1, y : 1

Conversely, if we already have a proof P⊥1 of ⊥(1, then we can derive a proof
of the Mix rule.

P ` Γ
x ().P ` Γ, x : ⊥

Q ` ∆
y().Q ` ∆, y : ⊥ P⊥1 ` x : 1, y : 1

νy (Q | P⊥1) ` ∆, x : 1

νx (P | νy (Q | P⊥1)) ` Γ,∆

Thus, Mix and ⊥(1 are logically equivalent and we choose to define a process
P⊥1 in terms of Mix.

P⊥1
def
= x [].0 | y [].0

In the other direction, using 0-Mix we can prove 1 (⊥.

0 `
y().0 ` y : ⊥

x ().y().0 ` x : ⊥, y : ⊥

Conversely, if we already have a proof P1⊥ of 1 (⊥, then we can derive a proof
of the 0-Mix rule.

P1⊥ ` x : ⊥, y : ⊥ y [].0 ` y : 1

νy (P1⊥ | y [].0) ` x : ⊥ x [].0 ` x : 1

νx (νy (P1⊥ | y [].0) | x [].0) `

Thus, 0-Mix and 1 (⊥ are logically equivalent and we choose to define the
process P1⊥ in terms of 0-mix.

P1⊥
def
= x ().y().0

Semantics. To account for Mix and 0-Mix, we extend the structural congruence
with the following rules.

P | 0 ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
νx (P | (Q | R)) ≡ (νx (P | Q)) | R, if x 6∈ fv(R)

The only cut reduction rule we add allows reduction under a Mix.

P −→C P ′

P | Q −→C P ′ | Q

For each standard commuting conversion involving a cut, there is a corresponding
one where the cut is replaced by a Mix.

x [y].(P | Q) | R −→CC x [y].((P | R) | Q)
x [y].(P | Q) | R −→CC x [y].(P | (Q | R))

(x (y).P) | Q −→CC x (y).(P | Q)
(x ().P) | Q −→CC x ().(P | Q)

(x [ini].P) | Q −→CC x [ini].(P | Q)
case x .{P ; Q} | R −→CC case x .{P | R; Q | R}

case x .{} | Q −→CC case x .{}

Adding Mix and 0-Mix does not disturb any of the usual meta-theoretic
properties of CP: termination, deadlock-freedom, and determinism all still hold.
Therefore, the conflation of 1 and ⊥ does not greatly alter the properties of CP,
though it is does weaken the separation between ⊗ and `, as we shall see in the
next section.

4.2 Concurrency with Multiple Channels (⊗ and `)

The second pair of connectives we consider for conflation are ⊗ and `. This
conflation is logically equivalent to the addition of a multi-cut rule that enables
communication over several channels at the same time, generalising the single
channel of the standard Cut rule, and the zero channels of the Mix rule. As we
shall see, the introduction of this rule results in the possibility of deadlock.

Conflation of the units 1 and ⊥ of ⊗ and ` via Mix already yields a trans-
lation from the former to the latter.

x ↔ y ` x : A⊥, y : A w ↔ z ` w : B⊥, z : B

x ↔ y | w ↔ z ` x : A⊥,w : B⊥, y : A, z : B

y(z).(x ↔ y | w ↔ z) ` x : A⊥ ` B⊥, y : A, z : B

x (w).y(z).(x ↔ y | w ↔ z) ` x : A⊥ ` B⊥, y : A ` B

Conversely, if we already have a proof P⊗` of A ⊗ B (A ` B , then we can
prove ` 1, 1, and hence the Mix rule

P⊗` ` x : 1 ` 1, y : ⊥`⊥
` x : 1 ` y : 1

y [x].(x [].0 | y [].0) ` y : 1⊗ 1

νy (P⊗` | y [x].(x [].0 | y [].0)) ` x : 1 ` 1

νx (νy (P⊗` | y [x].(x [].0 | y [].0)) | x [w].w ↔ z | x ↔ y) ` y : 1, z : 1

where we make use of the invertibility of `.

Whereas Mix is a variation on cut in which no channels communicate be-
tween the two processes, another natural variation is to allow two channels to
communicate simultaneously between two processes.

BiCut
P ` Γ, x : A⊥, y : B⊥ Q ` ∆, x : A, y : B

νxy (P | Q) ` Γ,∆

In general one might consider n channels communicating across a cut so the Mix
rule is the nullary case of such a multicut.

Using BiCut we can show that A ` B (A⊗ B .

y : A⊥,w : A x : B⊥, z : B

x : A⊥ ⊗ B⊥,w : A, z : B

x : A,w : A⊥ y : B , z : B⊥

y : A⊗ B ,w : A⊥, z : B⊥

νwz (x [y].(w ↔ y | x ↔ z)
|y [x].(w ↔ x | y ↔ z))

` x : A⊥ ⊗ B⊥, y : A⊗ B

Conversely, if we already have a proof P`⊗ of A ` B (A ⊗ B , then we can
derive a proof of the BiCut rule.

P ` Γ, x : A⊥, y : B⊥

y [x].P ` Γ, y : A⊥ ⊗ B⊥
Q ` ∆, x : A, y : B

y(x).Q ` ∆, y : A ` B

νy (y [x].P | y(x).Q) ` Γ,∆

where we write y [x].P as syntactic sugar for νz (z (x).P{z/y} | P`⊗).

P ` Γ, x : A, y : B

P{z/y} ` Γ, x : A, z : B

z (y).P{z/y} ` Γ, z : A ` B P`⊗ ` z : (A ` B)⊥, y : A⊗ B

νz (z (x).P{z/y} | P`⊗) ` Γ, y : A⊗ B

Thus, BiCut and A ` B (A ⊗ B are logically equivalent and we choose to
define the process P`⊗ in terms of BiCut.

P`⊗ = νwz (x [y].(w ↔ y | x ↔ z) | y [x].(w ↔ x | y ↔ z))

We can also derive 0-Mix using BiCut and Axiom.

0
def
= νxy (x ↔ y | x ↔ y) `

As 0 does not have any observable behaviour in any context and neither does
this term, we can perfectly well take this to be our definition of 0 when working
with variants of CP that include BiCut.

From bicut to multicut. A natural way to try to define cut reduction in the
presence of BiCut is to lift each of the existing cut rules to bicut rules in which
the inactive name remains in place. Unfortunately, this does not work for the
rule reducing the interaction between ⊗ introduction and ` introduction (i.e.
sending and receiving a fresh channel).

νzx (x [y].(P | Q) | x (y).R) −→C νzy (P | νx (Q | R))

The problem is that z may be bound in Q , so moving Q across the z cut may
require contradictory types for z . One can attempt to work around the issue by
analysing whether z occurs in P or Q . But if z has type ?A for some A then
it may occur in both. To avoid the problem we take a more uniform approach,
introducing a multicut construct that generalises Mix, BiCut, and Cut.

MultiCut
P ` Γ, x1 : A⊥1 , . . . , xn : A⊥n Q ` ∆, x1 : A1, . . . , xn : An

νx1, . . . , xn (P | Q) ` Γ,∆

Now we can construct a send/receive rule that does not move any of the sub-
terms across a cut. (We shall delegate all such cut-shuffling to the structural
congruence.)

ν~xx (x [y].(P | Q) | x (y).R) −→C ν~xxy ((P | Q) | R)

Extending the pattern for BiCut, one can encode n-cut, for n > 2 in terms
of P`⊗ (and hence BiCut).

νx1 . . . xn (P | Q)
def
= νxn (xn [x1]. · · · x [xn−1].P | xn(x1). · · · xn(xn−1).Q)

This shows us that BiCut is logically equivalent to MultiCut, but it does not
help with defining the semantics of BiCut, which we specify using MultiCut
anyway.

Semantics. The structural congruence in the presence of MultiCut is as follows.

ν~xxy~y (P | Q) ≡ ν~xyx~y (P | Q)

x ↔ w ≡ w ↔ x
ν~xx (w ↔ x | P) ≡ P [w/x], if w /∈ ~x

ν~x (P | Q) ≡ ν~x (Q | P)
ν~x~y (P | ν~z (Q | R)) ≡ ν~y~z (ν~x (P | Q) | R),

if ~x /∈ fv(R) and ~z /∈ fv(P)
ν~xx (!x (y).P | Q) ≡ Q , if x /∈ fv(Q)

ν~xx (!x (y).P | Q{x/z}) ≡ ν~xxz ((!x (y).P | !z (y).P) | Q)

The first rule allows reordering of bound variables. The remaining rules cor-
respond to the original structural rules, taking into account the possibility of
additional cut variables. The third rule is constrained such that a substitution

can only be performed if the substituted variable is not bound by the cut. The
fifth rule allows us to focus on any pair of processes while moving the cut vari-
ables between the multicuts appropriately. The final rule takes advantage of
Mix to avoid the problem we already encountered with adapting the original
send/receive rule for use with BiCut.

The primary cut rules are as follows.

ν~x (x [].0 | x ().P) −→C P
ν~xx (x [y].(P | Q) | x (y).R) −→C ν~xxy ((P | Q) | R)

ν~xx (x [ini].P | case x .{Q1; Q2}) −→C ν~xx (P | Qi)
ν~xx (!x (y).P | ?x [y].Q) −→C ν~xy (P | Q), if x /∈ fv(Q)

P −→C P ′

ν~x (P | Q) −→C ν~x (P ′ | Q)

The send/receive rule uses mix and extends the existing multicut. The other
rules are straightforward generalisations of the original ones.

Adding MultiCut introduces the possibility of deadlock. Termination (but
not cut-elimination) and determinism are preserved.

4.3 Nondeterminism (0 and > / ⊕ and &)

The previous two sections dealt with the conflation of the multiplicative con-
nectives, 1/⊥ and ⊗/`. Conflation of the additive connectives 0/>, and ⊕/&
yields a calculus that has local nondeterminism: processes can be defined as the
nondeterministic combination of two processes, or as processes that may fail.

As in π-calculus, we can easily extend CP with a construct to nondetermin-
istically choose between two processes.

Choose
P ` Γ Q ` Γ

P + Q ` Γ

The unit of nondeterminism fail makes no choices.

Fail

fail ` Γ

Binary nondeterminism does not change the properties we can prove, and
indeed the Choose rule is derivable in two ways.

P ` Γ
x ().P ` Γ, x : ⊥

Q ` Γ
x ().Q ` Γ, x : ⊥

case x .{x ().P ; x ().Q} ` Γ, x : ⊥&⊥
x [].0 ` x : 1

x [in1].x [].0 ` x : 1⊕ 1

νx (case x .{x ().P ; x ().Q} | x [in1].x [].0) ` Γ

P ` Γ
x ().P ` Γ, x : ⊥

Q ` Γ
x ().Q ` Γ, x : ⊥

case x .{x ().P ; x ().Q} ` Γ, x : ⊥&⊥
x [].0 ` x : 1

x [in2].x [].0 ` x : 1⊕ 1

νx (case x .{x ().P ; x ().Q} | x [in2].x [].0) ` Γ

The proofs are not cut-free, and they both fail to capture the semantics of
nondeterminism: the first always reduces to P and the second to Q .

We do not need to add any features to CP in order to prove that 0 (
>. Logically 0 represents falsehood, and thus implies everything including >.
However, there are two distinct cut-free proofs of 0 (>.

case x .{} ` x : >, y : > case y .{} ` x : >, y : >

We can combine these using nondeterminism.

case x .{}+ case y .{} ` x : >, y : >

Similarly, there are two distinct cut-free proofs of A & B (A⊕ B in plain CP.

x ↔ y ` A⊥,A

y [in1].x ↔ y ` x : A⊥, y : A⊕ B

x [in1].y [in1].x ↔ y ` x : A⊥ ⊕ B⊥, y : A⊕ B

x ↔ y ` x : B⊥, y : B

y [in2].x ↔ y ` x : B⊥, y : A⊕ B

x [in2].y [in2].x ↔ y ` x : A⊥ ⊕ B⊥, y : A⊕ B

Again, we can combine these using nondeterminism.

(x [in1].y [in1].x ↔ y) + (x [in2].y [in2].x ↔ y) ` x : A⊥ ⊕ B⊥, y : A⊕ B

Reading CP as a logic, the Fail rule has obvious logical problems: it allows us
to prove anything! However, that is not to say that it does not have a meaningful
dynamic semantics in terms of cut reduction. Failure immediately yields a proof
of >(0.

fail ` x : 0, y : 0

Conversely, if we already have a proof P>0 of >(0, then we can derive a proof
of the Fail rule.

case x .{} ` x : >
P>0 ` x : 0, y : 0 case y .{} ` y : >, Γ

νy (P>0 | case y .{}) ` x : 0, Γ

νx (case x .{} | νy (P>0 | case y .{})) ` Γ

Thus, Fail and >(0 are logically equivalent and we can define P>0 in terms
of Fail.

P>0
def
= fail

Of course, A⊕B (A & B can be proved with fail. We could simply use fail
to prove this immediately, but this does not have the right dynamic semantics
in terms of nondeterminism. A more satisfying proof is given by the following
judgement.

case x .{case y .{x ↔ y ; fail}; case y .{fail; x ↔ y}} ` Γ

This judgement captures the idea that reduction can succeed if the two channels
make compatible choices. In the other direction, we can prove ` 0 (and hence
` Γ for any Γ) from P⊕& ` A⊕ B (A & B .

x [].0 ` x :1

P ` x :1⊕ 0 P⊕& ` x :⊥&>, y :1 & 0

νx (P | P⊕&) ` y : 1 & 0

case y .{} ` y :>, z :0

Q ` y :⊥⊕>, z :0

νy (νx (x [in1].x [].0 | P⊕&) | y [in2].case y .{}) ` z :0

where P = x [in1].x [].0 Q = y [in2].case y .{}

Thus, Fail and A⊕B (A & B are logically equivalent and we choose to define
the semantics of P⊕& in terms of Fail.

P⊕&
def
= case x .{case y .{x ↔ y ; fail}; case y .{fail; x ↔ y}}

Bicut and fail. It turns out that Fail is also derivable from BiCut. If we have
BiCut then we can define Fail as follows.

fail
def
= νxy (x ↔ y | case x .{})

Semantics. Following π-calculus, we add two reduction rules.

P + Q −→C P
P + Q −→C Q

Nondeterminism (without BiCut) does not disturb cut-elimination. Termina-
tion and deadlock-freedom are preserved. Of course, determinism is lost. How-
ever, the determinism we have added is local, in the sense that while an indi-
vidual process may nondeterministically evolve, this nondeterminism does not
arise from two separate processes racing for some shared resource. If we are to
capture interesting concurrent behaviour then it seems natural to allow for racy
communication. We will see in the next section how to introduce races.

4.4 Access Points (! and ?)

Access points provide a dynamic match-making service for initiating session
communication. An access point a of type ?A allows an arbitrary number of
channels of type A to nondeterministically accept requests from an arbitrary
number of channels of type A⊥. Each channel of type A is nondeterministically
paired up with a matching channel of type A⊥. If at any point the numbers of
A channels and A⊥ channels differ, then any unmatched channels block until a
matching channel becomes available (which may never happen).

It is not clear to us if it is possible to conflate ! and ? in quite the same way
as we did for the other type constructors. Nevertheless, we can achieve a similar
effect by a slightly different route, whereby we replace ! and ? with access points.

The rules for accepting and requesting a connection through an access point
replace the Bang and Query rules.

Accept
P ` Γ, x : !A, y : A

?x (y).P ` Γ, x : !A

Request

P ` Γ, x : ?A, y : A

?x [y].P ` Γ, x : ?A

The two differences from the Bang and Query rules are that: in each rule x is
bound in P , allowing the access point to be reused in the continuation; and there
are no restrictions on Γ in Accept. The weakening and contraction capabilities
are extended to propositions of the form !A.

Weaken!
P ` Γ

P ` Γ, x : !A

Contract!
P ` Γ, y : !A, z : !A

P{x/y , x/z} ` Γ, x : !A

The original Bang and Query rules are derivable from the above rules:

P ` ?Γ, y : A

P ` ?Γ, x : !A, y : A

?x (y).P ` ?Γ, x : !A

P ` Γ, y : A

P ` Γ, x : ?A, y : A

?x [y].P ` Γ, x : ?A

Conversely, if for all A we have proofs of !A (?A and ?A (!A, then we can
straightforwardly derive Accept, Request, Weaken!, and Contract!.

Access points liberate name restriction from parallel composition. We will
use the following syntactic sugar.

0
def
= νa (?a[x].x [].0 | ?a[x].x [].0)

(νa)P
def
= νa (P | 0)

(νa1 . . . an)P
def
= (νa) . . . (νan)P

In addition to the changes to the typing rules, we also add a type equation

?A = !A = ?A⊥

capturing the idea that access points play the role of both ! and ?. This equation
immediately implies that !A (?A⊥ and ?A (!A⊥, which does not quite
fit with our previous pattern. However, if it is the case that A and all of its
subformulas are self-dual then we can show that !A (?A and ?A (!A are
admissible, as we might expect. As it turns out, we can encode Mix, MultiCut,
and Choice using access points, so indeed these properties are admissible and
all types are self-dual.

P | Q def
= νa (P | Q)

νx1 . . . xn (P | Q)
def
= (νa1 . . . an)(?a1(x1). · · · ?an(xn).P | ?an [x1]. · · · ?an [xn].Q)

fail
def
= νx (case x .{} | (νa)?a(y).x ↔ y)

P + Q
def
= νa ((?a(x).x [in1].x [].0 | ?a(x).x [in2].x [].0) | ?a[x].case x .{x ().P ; x ().Q})

Semantics. In the presence of access points, it makes sense to add a garbage
collection rule to the structural congruence to dispense with unused cut variables.

νx~x (P | Q) ≡ ν~x (P | Q), if x /∈ fv(P) ∪ fv(Q)

The reduction for ! against ? need not operate across the cut at which the
access point is bound, and the channel is not discarded as the access point can
be used an arbitrary number of times.

ν~x (?a(x).P | ?a[x].Q) −→C ν~xx (P | Q)

In order to give a closed system of reduction rules we assume MultiCut. We
disable the structural congruence rules for explicitly performing replication and
garbage collection of ! channels, as these are no longer necessary due to weakening
and contraction on !.

The commuting conversions for access points are unsurprising.

ν~z (?x (y).P | Q) −→CC ?x (y).ν~z (P | Q)
ν~z (?x [y].P | Q) −→CC ?x [y].ν~z (P | Q)

CP extended with access points does not enjoy termination, deadlock-freedom,
or determinism. In return for losing these properties, access points significantly

increase the expressiveness of CP. Indeed, the stateful nondeterminism inher-
ent in the semantics of access points also admits a meaningful notion of racy
communication. A critical feature that CP lacks, even if we add multicut and
nondeterminism, is any form of concurrent shared state. For instance, it is not
possible to represent the standard session typing example of a book seller in CP
in such a way that different buyers can observe any information about which
books have been sold by the book seller to other buyers. Plain replication only
allows us to copy the entire book seller. Access points do allow us to implement
such examples.

Example: State. We implement a state cell of type A as an access point of type
?A.

State A
def
= ?A

new(v).(νr)P
def
= (νr)(?r(x).x ↔ v | P)

put(r , v).P
def
= ?r [v ′].(?r(x).x ↔ v | P)

get(r).(νv)P
def
= ?r [v].(?r(x).x ↔ v | P)

The new operation allocates a new reference cell (r) initialised to the supplied
value. The put operation discards the existing state (v ′). The get operation
duplicates the existing state (v).

Using this encoding of state we can construct Landin’s knot [Landin, 1964],
which in sequential languages shows how higher-order state entails recursion. In
CP, this provides a way of implementing recursive and replicated processes. For
example, a nonterminating process can be defined by

forever
def
= νf (id(f) | new(f).(νr)νg (suspend(g ,GF (r)) | put(r , g).GF (r)))

where

suspend(f ,P)
def
= ?f (x).P

force(f)
def
= ?f [x].0

id(f)
def
= suspend(f , 0)

GF (r)
def
= get(r).(νf)force(f)

The contents of the reference cell has type ?(?A), where A can by any type.

More usefully, we can implement replication in the same way as forever , ex-
cept the replicated process is placed in parallel with the recursive call represented
by the body of the suspension.

!x (y).P
def
= νf (id(f) | new(f).(νr)νg (suspend(g , (GF (r) | ?x (y).P))

| put(r , g).GF (r)))

Example: Phil’s bookstore. As a simple example of using access points to capture
concurrent state, we model a scenario in which Phil has three books: two copies
of Introduction to Functional Programming [Bird and Wadler, 1988] and one

copy of Java Generics and Collections [Naftalin and Wadler, 2006], which he is
willing to give to his students.

Phil
def
= !phil(x).case x .{FP → ?fp[y].x ↔ y ; JG → ?jg [y].x ↔ y}

Fp
def
= ?fp(x).x [Yes].?fp(x).x [Yes].?fp(x).x [No].0

Jg
def
= ?jg(x).x [Yes].?jg(x).x [No].0

For clarity, we tag the sums, as we did for booleans in (§3). The Phil process ac-
cepts communications on the phil channel, dispatching requests for Java Gener-
ics and Collections to the Jg process and requests for Introduction to Functional
Programming to the Fp process. The types of the access point channels are as
follows.

phil : ?(JG : (Yes : ?0⊕No : ?0) & FP : (Yes : ?0⊕No : ?0)}
fp : ?(Yes : ?0⊕No : ?0)
jg : ?(Yes : ?0⊕No : ?0)

We exploit the type ?0 to allow processes to be implicitly terminated. Now let
us define processes to represent Phil’s PhD students.

Jack
def
= ?phil [x].x [JG].case x .{Yes → JackHappy ; No → JackSad}

Jakub
def
= ?phil [x].x [JG].case x .{Yes → JakubHappy ; No → JakubSad}

Shayan
def
= ?phil [x].x [FP].case x .{Yes → ShayanHappy ; No → ShayanSad}

Simon
def
= ?phil [x].x [FP].case x .{Yes → SimonHappy ; No → SimonSad}

Jack and Jakub request Java Generics and Collections. Shayan and Simon re-
quest Introduction to Functional Programming. We can compose all of these
processes in parallel.

(Phil | Jg | Fp) | Jack | Jakub | Shayan | Simon

Reduction will nondeterministically assign each book to a student, until at some
point Phil runs out of the Java Generics and Collections book and either Jack
or Jakub has a request denied, having to go to the library instead. Note that the
choice of whether Jack or Jakub is sad is not made locally by any of the Jack ,
Jakub or Phil processes, but as a result of the racy interaction between them.
Without access points it is not possible in CP to represent this kind of stateful
and racy interaction.

Do we need access points? In classical linear logic, and hence CP, weakening
and contraction are derivable for each type built up from the “negative” con-
nectives (`, ⊥, &, >, and ?). Once we conflate dual connectives, weakening and
contraction also become derivable for each type built up from corresponding the
positive connectives as well.

Given that conflating duals allows us to define weakening and contraction
at all types, even in the multiplicative additive fragment of CP (without ! and

?), one might suspect that this would result in the effective identification of
! and ?, and hence we should be able to define unlimited state without using
access points. This suggests a contradiction, because we claim that the resulting
calculus is terminating.

In fact, we can simulate a form of unlimited state in this manner, but with
a caveat. The implementation of weakening and contraction in this encoding is
explicit. Correspondingly, the size of the definition of each operation is at least
linear in the number of times the reference cell is accessed. Non-terminating
programs written using Landin’s knot necessarily access the same reference cell
an infinite number of times. Hence, a process (without access points) encoding
such a program would necessarily be infinite. Thus, we cannot encode full higher-
order state and Landin’s knot without access points.

5 Conclusions and Future Work

We have explored extensions to Wadler’s CP calculus that make it more expres-
sive, inspired syntactically by session types and the π-calculus and semantically
by Abramsky et al.’s canonical interaction category SCons. In doing so, we have
discovered an unexpected coincidence: that adding π-calculus terms “missing”
from CP allows us to realise the identification of dual types present in SCons,
while introducing bi-implications between the dual types allows us to derive the
logical rules corresponding to the missing terms. Our approach seems to cover
much of the expressivity gap between CP and π-calculus, including nondeter-
minism, concurrent state, and recursion. We conclude by sketching several future
directions suggested by this work.

SCons has more structure than that necessary to express linear logic; in
particular, individual SCons processes may have internal notions of state, and
thus changing behaviour, without changing types. In contrast, CP (and other
linear logic-inspired process calculi) capture all state explicitly in the types,
and each copy of a replicated process always behave identically. This poses two
questions. First, can an approach similar to interaction categories be adapted to
describe channel passing behaviour? Second, how do notions of state, as encoded
using access points (i.e., the identification of the dual access points) correspond
to the notion of state internal to an SCons process?

Access points are rather a blunt tool. While they do yield concurrent state,
they also destroy many of the nice meta-theoretic properties of CP. We believe
that it should be possible to distil better behaved abstractions that still provide
some of the extra expressiveness of access points.

While we believe that the extended calculus is sufficient to encode the (typed)
π-calculus, we think it would be valuable to demonstrate such a semantics-
preserving encoding explicitly. We would also like to address quantification,
both first-order (corresponding to value-passing calculi) and second-order (cor-
responding to polymorphic channel-passing calculi).

In recent work [Lindley and Morris, 2015], we demonstrate a tight corre-
spondence between cut-reduction in CP and a small-step operational semantics

for GV, a linear lambda-calculus extended with primitives for session-typing. It
would be interesting to extend that correspondence to include additional features
such as access points. Moreover, we are also studying well-founded recursive and
corecursive session types in CP and their relationship to inductive linear data
types in GV. We conjecture that conflating well-founded recursive and core-
cursive session types in CP will yield non-well-founded recursive session types
and hence a way of encoding the entirety of the untyped π-calculus through a
universal session type.

Acknowledgements.
This work was supported by the EPSRC grant: From Data Types to Session
Types—A Basis for Concurrency and Distribution (EP/K034413/1).

References

Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (Apr 1992)
Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the founda-

tions of typed concurrent programming. In: Proceedings of the NATO Ad-
vanced Study Institute on Deductive Program Design, Marktoberdorf, Ger-
many. pp. 35–113 (1996)

Bellin, G., Scott, P.J.: On the π-Calculus and linear logic. Theoretical Computer
Science 135(1), 11–65 (1994)

Bird, R., Wadler, P.: An Introduction to Functional Programming. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK (1988)

Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
CONCUR. Springer (2010)

Curry, H.B.: Functionality in combinatory logic. Proceedings of the National
Academy of Science 20, 584–590 (1934)

Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In:
EXPRESS/SOS, 2015, Madrid, Spain, 31st August 2015. pp. 1–15. Madrid,
Spain (2015)

Ehrhard, T., Laurent, O.: Interpreting a finitary pi-calculus in differential inter-
action nets. Inf. Comput. 208(6), 606–633 (2010), http://dx.doi.org/10.
1016/j.ic.2009.06.005

Fiore, M.P.: Differential structure in models of multiplicative biadditive intu-
itionistic linear logic. In: Typed Lambda Calculi and Applications, 8th Inter-
national Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceed-
ings. pp. 163–177 (2007)

Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: CONCUR. Springer (2014)

Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (Jan 1987)
Honda, K.: Types for dyadic interaction. In: CONCUR. Springer (1993)
Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus

and polarised proof-nets. Theor. Comput. Sci. 411(22-24), 2223–2238 (2010),
http://dx.doi.org/10.1016/j.tcs.2010.01.028

http://dx.doi.org/10.1016/j.ic.2009.06.005
http://dx.doi.org/10.1016/j.ic.2009.06.005
http://dx.doi.org/10.1016/j.tcs.2010.01.028

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. Springer (1998)

Honda, K., Yoshida, N., Berger, M.: Control in the π-calculus. In: Fourth ACM-
SIGPLAN Continuation Workshop, CW04, 2004. Online proceedings. (2004)

Houston, R.: Finite products are biproducts in a compact closed category. Jour-
nal of Pure and Applied Algebra 212(2), 394 – 400 (2008), http://www.

sciencedirect.com/science/article/pii/S0022404907001454

Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P.,
Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Academic Press, Boston, MA (1980)

Kobayashi, N.: A new type system for deadlock-free processes. In: CONCUR.
Springer (2006), http://dx.doi.org/10.1007/11817949_16

Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the π-calculus. In:
POPL. ACM (1996)

Landin, P.J.: The mechanical evaluation of expressions. Computer Journal 6(4),
308–320 (1964)

Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J.
(ed.) ESOP 2015. Lecture Notes in Computer Science, vol. 9032, pp. 560–584.
Springer (2015), http://dx.doi.org/10.1007/978-3-662-46669-8_23

Mazza, D.: The true concurrency of differential interaction nets. Mathematical
Structures in Computer Science (2015), to appear

Naftalin, M., Wadler, P.: Java Generics and Collections. O’Reilly Media, Inc.
(2006)

Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: LICS.
ACM (2014), http://doi.acm.org/10.1145/2603088.2603116

Tait, W.W.: Infinitely long terms of transfinite type. In: Crossley, J.N., Dum-
mett, M.A.E. (eds.) Formal Systems and Recursive Functions. North-Holland,
Amsterdam (1965)

Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE. Springer (1994)

Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384–418 (2014)
Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015), http:
//doi.acm.org/10.1145/2699407

http://www.sciencedirect.com/science/article/pii/S0022404907001454
http://www.sciencedirect.com/science/article/pii/S0022404907001454
http://dx.doi.org/10.1007/11817949_16
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://doi.acm.org/10.1145/2603088.2603116
http://doi.acm.org/10.1145/2699407
http://doi.acm.org/10.1145/2699407

	Conflation Confers Concurrency

