Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

High power density STATCOM with extended reactive power control range

Li, Peng and Adam, G. P. and Holliday, D. and Williams, B. W. (2015) High power density STATCOM with extended reactive power control range. In: 2015 International Conference on Renewable Energy Research and Applications (ICRERA). Institute of Electrical and Electronics Engineers Inc., pp. 710-715.

[img]
Preview
Text (Li-etal-ICRERA2015-high-power-density-STATCOM-extended-reactive-power-control-range)
Li_etal_ICRERA2015_high_power_density_STATCOM_extended_reactive_power_control_range.pdf - Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (770kB) | Preview

Abstract

This paper proposes a new configuration for static synchronous compensator (STATCOM) based on the ac-side voltage doubling voltage source converter (ACVD-VSC), which has twice of the dc-link voltage utilization as two-level VSC, hence improved power density per unit dc-link voltage. This means its dc voltage limit for reactive power generation is higher than that using conventional two-level VSC. Therefore, extended reactive power control range is resulted for the proposed solution. Also the ACVD converter has zero dc common mode voltage between the ac neutral point and the dc-link negative terminal, reducing the insulation level for the interfacing transformer when the negative dc bus is grounded. The basic operation principles of ACVD-VSC are reviewed. Then, it is used to perform voltage or power flow control as shunt compensators.