Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


High power density STATCOM with extended reactive power control range

Li, Peng and Adam, G. P. and Holliday, D. and Williams, B. W. (2015) High power density STATCOM with extended reactive power control range. In: 2015 International Conference on Renewable Energy Research and Applications (ICRERA). Institute of Electrical and Electronics Engineers Inc., pp. 710-715.

Text (Li-etal-ICRERA2015-high-power-density-STATCOM-extended-reactive-power-control-range)
Li_etal_ICRERA2015_high_power_density_STATCOM_extended_reactive_power_control_range.pdf - Accepted Author Manuscript
License: Creative Commons Attribution 4.0 logo

Download (770kB) | Preview


This paper proposes a new configuration for static synchronous compensator (STATCOM) based on the ac-side voltage doubling voltage source converter (ACVD-VSC), which has twice of the dc-link voltage utilization as two-level VSC, hence improved power density per unit dc-link voltage. This means its dc voltage limit for reactive power generation is higher than that using conventional two-level VSC. Therefore, extended reactive power control range is resulted for the proposed solution. Also the ACVD converter has zero dc common mode voltage between the ac neutral point and the dc-link negative terminal, reducing the insulation level for the interfacing transformer when the negative dc bus is grounded. The basic operation principles of ACVD-VSC are reviewed. Then, it is used to perform voltage or power flow control as shunt compensators.