Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Fusion of block and keypoints based approaches for effective copy-move image forgery detection

Zheng, Jiangbin and Liu, Yanan and Ren, Jinchang and Zhu, Tingge and Yan, Yijun and Yang, Heng (2016) Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimensional Systems and Signal Processing. ISSN 0923-6082

[img] Text (Zheng-etal-MSSP2016-block-and-keypoints-based-approaches-for-effective-copy-move-image-forgery)
Zheng_etal_MSSP2016_block_and_keypoints_based_approaches_for_effective_copy_move_image_forgery.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 27 April 2017.

Download (1MB) | Request a copy from the Strathclyde author

Abstract

Keypoint-based and block-based methods are two main categories of techniques for detecting copy-move forged images, one of the most common digital image forgery schemes. In general, block-based methods suffer from high computational cost due to the large number of image blocks used and fail to handle geometric transformations. On the contrary, keypoint-based approaches can overcome these two drawbacks yet are found difficult to deal with smooth regions. As a result, fusion of these two approaches is proposed for effective copy-move forgery detection. First, our scheme adaptively determines an appropriate initial size of regions to segment the image into non-overlapped regions. Feature points are extracted as keypoints using the scale invariant feature transform (SIFT) from the image. The ratio between the number of keypoints and the total number of pixels in that region is used to classify the region into smooth or non-smooth (keypoints) regions. Accordingly, block based approach using Zernike moments and keypoint based approach using SIFT along with filtering and post-processing are respectively applied to these two kinds of regions for effective forgery detection. Experimental results show that the proposed fusion scheme outperforms the keypoint-based method in reliability of detection and the block-based method in efficiency.