Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A comparative study of methods for modelling the structural stiffness of generator components

Jaen Sola, P. and McDonald, A. S. (2016) A comparative study of methods for modelling the structural stiffness of generator components. In: A Comparative Study of Methods for Modelling the Structural Stiffness of Generator Components. IET, Stevenage, pp. 1-7.

[img]
Preview
Text (Sola-McDonald-PEMD2016-comparative-study-methods-modelling-structural-stiffness-generator)
Sola_McDonald_PEMD2016_comparative_study_methods_modelling_structural_stiffness_generator.pdf - Accepted Author Manuscript

Download (464kB) | Preview

Abstract

Direct-drive generators are low speed electrical machines requiring robust and large supporting structures designed to resist the significant loads present during assembly and operation. Generator structures have to be stiff, especially in the radial direction for radial-flux machines. This paper presents three different structural modelling approaches: finite element, analytical and hybrid (a combination of the results obtained from dimensional studies and finite element analyses). These are used along with models of electromagnetic active material, to parametrically calculate the minimum structural stiffness and mass of the components forming the machine.