Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea

Zhang, Yansheng and Bauer, Ralf and Windmill, James F. C. and Uttamchandani, Deepak (2016) Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea. In: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), 2016-01-24 - 2016-01-28.

Text (Zhang-etal-IEEEMEMS2016-multi-band-asymmetric-piezoelectric-MEMS-microphone-inspired-Ormia-Ochracea)
Zhang_etal_IEEEMEMS2016_multi_band_asymmetric_piezoelectric_MEMS_microphone_inspired_Ormia_Ochracea.pdf - Accepted Author Manuscript

Download (863kB) | Preview


A multi-band piezoelectric directional MEMS microphone is demonstrated based on a bio-mimetic design inspired by the parasitoid fly Ormia ochracea, using the PiezoMUMPs multi-user foundry process. The device achieves a directional sound field response within four frequency bands, all lying below 15 kHz. It acts as a pressure gradient microphone with hyper-cardioid polar patterns in all frequency bands, with the measured mechanical sensitivity being in good agreement with acoustic-structural simulations conducted in COMSOL Multiphysics. The maximum experimentally measured acoustic sensitivity of the device is 19.7 mV/Pa, located at a frequency of 7972 Hz and sound incidence normal to the microphone membrane.