Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea

Zhang, Yansheng and Bauer, Ralf and Windmill, James F. C. and Uttamchandani, Deepak (2016) Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea. In: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), 2016-01-24 - 2016-01-28.

Text (Zhang-etal-IEEEMEMS2016-multi-band-asymmetric-piezoelectric-MEMS-microphone-inspired-Ormia-Ochracea)
Zhang_etal_IEEEMEMS2016_multi_band_asymmetric_piezoelectric_MEMS_microphone_inspired_Ormia_Ochracea.pdf - Accepted Author Manuscript

Download (863kB) | Preview


A multi-band piezoelectric directional MEMS microphone is demonstrated based on a bio-mimetic design inspired by the parasitoid fly Ormia ochracea, using the PiezoMUMPs multi-user foundry process. The device achieves a directional sound field response within four frequency bands, all lying below 15 kHz. It acts as a pressure gradient microphone with hyper-cardioid polar patterns in all frequency bands, with the measured mechanical sensitivity being in good agreement with acoustic-structural simulations conducted in COMSOL Multiphysics. The maximum experimentally measured acoustic sensitivity of the device is 19.7 mV/Pa, located at a frequency of 7972 Hz and sound incidence normal to the microphone membrane.