Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Single-stage ac–dc buck–boost converter for medium-voltage high-power applications

Abdelsalam, Ibrahim and Adam, Grain Philip and Holliday, Derrick and Williams, Barry W. (2016) Single-stage ac–dc buck–boost converter for medium-voltage high-power applications. IET Renewable Power Generation, 10 (2). pp. 184-193. ISSN 1752-1416

Text (Abdelsalam-etal-IET-RPG-2016-Single-stage-ac–dc-buck–boost-converter-for-medium-voltage)
Abdelsalam_etal_IET_RPG_2016_Single_stage_ac_dc_buck_boost_converter_for_medium_voltage.pdf - Accepted Author Manuscript

Download (1MB) | Preview


This study proposes three topologies based on single-stage three-phase ac-dc buck-boost converters suitable for medium-voltage high-power applications. The first two topologies are based on a dual three-phase buck-boost converter, with a three-winding phase-shifted transformer to achieve sinusoidal input currents, with relatively small ac filters. The limitation of these two topologies is the switching devices are exposed either to a high voltage beyond that tolerable by a single device. The third topology is based on three single-phase buck-boost converters; with their dc output terminals connected in series to generate high voltage. By using this approach, voltage stresses on the switching devices are greatly reduced, and sinusoidal input currents with nearly unity power factor is achieved over the entire operating range when using small ac filters. Analysis, PSCAD/EMTDC simulations and experimentation are used to assess the feasibility of the proposed topologies during normal operation. Major findings of this study are discussed and summarised as a comparison between the three topologies.