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Abstract—Liberalisation of electricity markets, changing pat-
terns in the generation and use of electricity and new technologies
are some of the factors that result in increased uncertainty about
the future operating conditions of our power system. In this
context, planning for future investments in power system requires
careful selection and assessment of future operating conditions.
This paper revisits the notion of power system adequacy and
highlights the need for consideration of some factors that have
hitherto tended not to be part of a transmission expansion
planning process, in particular in respect of the credible range
of possible values of system operating conditions and transitions
between successive operating states. Firstly, we present some defi-
nitions of power system operational regions. Secondly, we present
a stochastic optimisation model that measures the adequacy of
a transmission network for given future operating conditions.
Uncertainties in demand and generation are modelled using a
large number of scenarios. The optimisation model identifies the
critical future operating conditions needing the special attention
of a power system planner. The proposed model is simulated on a
39-bus network, whereby it is shown that this model can identify
critical operating conditions that need the attention of a system
planner.

Index Terms—adequacy assessment; transmission planning;
renewable energy sources; stochastic optimisation.

I. INTRODUCTION

Modern power systems are in the midst of a comprehensive
change, initially driven by liberalisation of electricity markets
and now with an increased focus on renewable energy sources
(RES). Over the last decade, there has been a substantial
increase in installed capacities of RES and in some countries
instantaneous penetration of power from RES have reached
levels upto 50% of generation [1]. This paradigm shift has
introduced new challenges for transmission system operation
and planning [2]. Now power system planners need to consider
the uncertainties associated with the evolution of demand, fuel
prices, generation entry/closures whilst also needing to take
into account the operational uncertainties stemming from RES.
All these aforementioned uncertainties have temporal as well
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as spatial components and a careful consideration of associated
correlations is required.

The first step in planning for the future power system
is to check the adequacy and security of the future power
system. In utilities, this is normally done by solving sets of
load flow calculations on a few foreseeable future system
operating conditions [3]. Given the complexity of a power
system transmission expansion problem (TEP), only a reduced
number of future snapshots are considered for analysis. In
such a analyses, snapshots of cases that tend towards a worst
case identify problems with the future system operation and an
expert’s judgement is used to come up with a set of expansion
plans. This type of analysis does not take into account all the
relevant uncertainties or their probability distributions.

A. Academic literature

A TEP is a challenging problem, primarily because the
future conditions for which a system should be planned are
increasingly uncertain, particularly over the decadal time-
scales sometimes considered in transmission investment. In
formulations presented in the academic literature, a TEP is
usually framed as a mixed integer linear programming problem
where investment decisions are modelled using binary vari-
ables. Solution of a TEP problem proposes major topological
changes that are capital intensive and must translate into
increased reliability and/or savings in the cost of operating
the future power system, while minimising the risk of stranded
assets. Due to the complexity associated with the TEP prob-
lem, only a limited number of initial conditions is typically
considered in TEP problems.

In this context, there has been significant interest in address-
ing several aforementioned challenges. A generic framework
for a probabilistic TEP problem is proposed in [4], where a
step by step approach for assessing candidate decisions for
future investments in power systems is proposed. Authors in
[5] propose a three level TEP problem where the objective
is to minimise the system investment cost plus the worst
possible operational cost. Uncertainty is modelled as a robust
set that gives worst realisation of uncertain parameters that
are bounded by an uncertainty set. A Monte-Carlo scheme
is presented in [6] that studies the effect of wind power
uncertainty on power system adequacy. A TEP model is



presented in [7], where the first step is to check the need
for investment based on a deterministic criterion. All of the
TEP problems depend on a choice of initial conditions about
the future operating states and it is not very clear how such
initial conditions are obtained. Gaps in the state of the art as
represented in the academic literature include:

. a limited number of future snapshots are considered
for planning studies and it is not clear how the initial
conditions are selected for such snapshots;

. little or no effort is made to check operability of the
system during transitions from one time step to another.

B. Our contributions

It is difficult to accurately predict the future operating state
of a power system for a particular time in future. However, it
is possible to construct a set of credible operating states. Given
the combinatorial number of possibilities for future operating
states, the set of credible states can be very large. In this paper,
we present a mechanism that can reduce this set to a few
operating states that needs the attention of a system planner.
The proposed method is based on a stochastic optimisation
model that checks the operability of a power system while
taking into account the probability of an operating state and
impacts in terms of loss of load. We consider the uncertainties
that can arise during the future operation of a power system
and evaluate how power system adequacy metrics are affected
by these uncertainties. The proposed methodology identifies
operating states that need the attention of a transmission
system planner and we characterise them as critical operating
states. The critical operating states may have arisen due to non-
operability of the future power system or due to operability of
the future system but at a very high cost. This identifies a need
for investment in the former case ‘reliability driven’ and, in
the latter, ‘economy driven’, and the system planner can then
use expert judgement or further analysis to determine the type
and size of an investment. The contributions of our approach
are fourfold:

1) a tractable formulation that accounts for temporal con-
siderations and a large number of scenarios for the future
power system operation;

2) a method for identifying and ranking the critical oper-
ating states for further analysis;

3) improved adequacy assessment for future power systems
with high penetration levels of RES;

4) a highlighting of need to consider not only snapshots
but also the transitions between snapshots.

The remainder of the paper is organised as follows. Sec-
tion II describes the notion of adequacy assessment in power
systems and gives details of the uncertainties involved in
adequacy assessment of future power systems. Section III
gives the conceptual framework of the adequacy assessment
method. Section IV formulates the stochastic optimisation
approach for adequacy assessment and in section V we give
numerical examples of the proposed method. Conclusions and
future research directions are given in section VI.

Secure Region

Adequate Region

Inadequate Region

Infeasible Region

Figure 1. Operability regions of a power system.

II. ADEQUACY ASSESSMENT OF THE FUTURE NETWORK

Power systems are operated under a certain security criterion
that in most cases means no contingency from within a
particular defined set should endanger the supply of power
to the end users. Following a contingency, the operating point
could be pushed to an unsecured region and an intervention
may be required from a system operator to re-secure the
operating state of a system. Fig. 1 shows four operability
regions of a power system, where the innermost region is
called the secure region and most of the time an operating
point of a power system should lie within this region. An
operating point is in the adequate region if it is not secure but
the system is able to meet all the demand whilst respecting
network and physical constraints. If a system is only able to
meet part of the total demand then the operating point lies in
an inadequate region.

The infeasible region represents a situation of a wide-area
blackout, where a black-start is required to revive the system.
Within the infeasible region, the power flow equations do not
have a real solution, whereas in the inadequate region a real
power flow solution exists. Following we give definitions of
adequate operating point and secure operating point as follows.

Definition 1 (Adequate operating point). A power system
state where the system continues to supply all demand but
any of the security limits might be violated;, meaning that
any contingency from within a defined security set would
result in either loss of supply and/or violation of transmission
constraints.

Definition 2 (Secure operating point). A power system state
where the system is able to supply the aggregate electric power
and energy requirement of all the customers and it is able to
do so after the occurrence of any one contingency within a
given defined set, e.g. all the (N-1) events.

The region spanned by all adequate operating points is
called an adequate region and the region spanned by the



secure operating points is called a secure region, as shown
in the Fig. 1. Further characterization of a secure operating
point can be found in [8]. An example of a defined set of
contingencies, i.e. of ‘secured events’, can be found in [9].
The following lemma states an obvious relationship between
system adequacy and system security.

Lemma 1 (Relationship between adequacy and security). If a
power system is secure then it is adequate.

Proof. The proof follows from the definitions of power system
adequacy and power system security. |

From lemma 1 we note that power system adequacy is a
necessary condition for power system security. In this paper,
we restrict our analysis to determining adequacy of the future
power system. Further analysis is required to check if an
adequate operating state is secure.

A. Uncertainties involved in the adequacy assessment

In the day-ahead or the hour-ahead operation of a power
system, the objective of a system operator is to minimise
total operational costs while maintaining an adequate level of
reliability. In these time scales, the values of various random
variables can be predicted with reasonable accuracy and, if the
system has been sufficiently well planned, can be managed in
the real time operation of a power system. However when
system operation is seen years in advance, the framework for
analysis needs to adapt and it is inevitable to consider a large
set of credible future operating states that capture various
uncertainties. For example, day-ahead demand in the Great
Britain (GB) system can be predicted to good accuracy (e.g.
see demand forecast and out-turn values in [10]). However,
it is very difficult to say something about the demand of a
particular day in the year 2019.

Figure 2 shows a fan chart describing evolution of peak
electricity demand for the GB transmission system under four
different scenarios. The forecasts are obtained from future
energy scenarios from the GB system operator, National Grid
[11], whereas the inner graphs are based on historic data
obtained from [10]. The chart fans out as we look further
into the future because we are less and less certain about the
possible operating conditions in the future.

The yearly scenarios in Fig. 2 show a difference of approx-
imately 10GW in peak demand in the year 2034/35. If we
cluster the yearly demand for the year 2013/14 according to
seasons, we note an absolute demand variation of 31.4 GW in
the winter of 2013/14 between the highest evening peak and
lowest overnight minimum. If we further look into individual
days of the winter of 2013/14, we note a maximum absolute
variation of 15GW over any single day. This shows that only
taking a snapshot of demand for a season or a year is not
sufficient to capture the underlying uncertainty in demand.

Demand is only one of the many uncertainties that a
system planner needs to take into account whilst planning
for the future power system. Generation from RES is another
uncertainty that must be considered for adequacy assessment

of a power system and subsequent security assessment. As-
set condition, generator openings/closures, and long duration
equipment outages, whether planned (for maintenance or con-
struction work) or unplanned are some other uncertainties
that affect the adequacy of power system. In this paper, we
only consider the uncertainties stemming from demand and
RES generation during the future operation of power system.
However, the approach proposed in this paper can be extended
to account for other uncertainties.

B. Scenarios for adequacy assessment

Forecasting for future credible states of a power system is
an independent area of research and has attracted a lot of
attention. In this paper, we consider the operational scenarios
for demand and generation from RES as an input to our
stochastic optimisation model. Publicly available generation
and demand ‘macro-scenarios’, i.e the background of installed
generation capacity and peak demand, for the GB network are
obtained from [11] and the operational scenarios for demand
and RES are based on the historic data obtained from [10].

Let #%V denote the set of operating scenarios for RES
and &P denote the set of operational scenarios for demand,
respectively. For ease of presentation we denote a single index
set & for scenarios. The set & is defined as:

Fi={s=(84,5w):Sq € 5”D, Sw€ yw}

Let PVWV‘SY , be the available generation and py, 5,¢ be the real
power generation injection at the node w during the time
period t, respectively. The RES power output for the generator

w is modelled using the following equation:

0<pus <Py (1)

w,s,t
III. CONCEPTUAL FRAMEWORK

Our conceptual framework is as follows: a system planner
is faced with the possibility that a credible future operating
state will be insecure or, worse, inadequate. When the time
comes, the system operator should intervene to change the
operating state to make it secure (with the action very likely to
incur a cost) or, if they do not, it is because insufficient means
are available to the system operator to do so. In either case,
the transmission expansion planner should consider whether
investment in additional network facilities are required to
render the system securable under those circumstances or
reduce the cost of the operator’s intervention. Following on
from Lemma 1, a first step is determine whether the credible
future operating state is adequate. There is an uncertainty in
the future about demand and generation, and that uncertainty
is captured by a large number of macro-scenarios and, for each
of them, a large number of operating scenarios. For a given
macro-scenario, the system planner wants to determine the
scenarios containing critical operating conditions that require
more detailed assessment.

The TEP problem can be posed as a two-stage stochastic
program. The first stage of the problem could model the
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Figure 2. Demand forecast for the GB network. Four different scenarios for years upto 2035 are taken from [11]. Small figures show seasonal and daily load

curves for the year 2013/14.

transmission expansion candidates. The second stage realises
the operation of the power system and the actions that may be
taken by a system operator, such as rescheduling generation
and shedding load. In this paper, we fix the first decision
variables to the given topology of the network and study the
impact of future system operation on the adequacy. Inadequacy
in future operation of power system will identify a need for
investment.

The general form of a two stage stochastic program [12] is
given as:

minclx+ E:Q(x,9) (2a)

subject to
Ax=Db, (2b)
x=0, (20)

where Q(x,¢) =min{qTy: Wy =h-Tx,y =0} is the optimal
value of the second stage problem.

In the TEP problem, the values of the first stage decision
variables determine the network facilities available to the

system operator. These influence the operability of the system
and the cost of operation evaluated at the second for a range
of operating scenarios. The first stage may include a random
vector representing variations in the ‘macro-scenario’, i.e.
installed generation and demand growth. The random vector ¢
defines the uncertainty in future demand and RES generation,
y is a vector of the second-stage variables that model second
stage actions like generation rescheduling and load shedding.
The second stage decisions are implemented on the realisation
of the random vector ¢. In the next section, we give the
mathematical formulation of the problem.

IV. PROBLEM FORMULATION

Consider an electricity network A4 that comprises of a set
of buses & ={1,2,---,nB} and a set of lines .&%. Let a set
of generators be ¢ and a set of loads 2. A subset ¥}, of
generators is attached to a bus b € 8; similarly, 2}, is the
subset of loads and %, is a subset of RES generators connected
at a bus b e %, respectively.



A. Power flow

In this paper, we use a well know DC approximation of
nonlinear power flow equations, in which series resistance
and shunt admittances are neglected, voltage magnitudes are
assumed to be equal to 1.0 per unit and small angle approxi-
mations are used [13]. This approximation ignores voltages
and reactive power. We note that shortfalls or excesses of
reactive power can be quite readily addressed in 9-18 month
timescales by installation of sufficient reactive compensation
in appropriate locations. On the other hand, enhancements of
the network’s thermal capacities can take many years, often
because of issues around obtaining planning consents, and
hence must be identified well in advance and therefore form
the core of the expansion planner’s task. As a consequence,
in this work, we concentrate on thermal network constraints
which can be approximated quite well by the "DC’ power flow
equations and give significant computational advantages.

Let pg s, be the real power generation from a conventional
generator g in a time interval ¢ if an operating scenario s
is realised. The power balance equations are given as, Vb €
B,se L, teT

G L
Z pg,s,t+ Z pwst Z pdst Z pl,s,t 3)
g€‘§b wewy de@b l€$h
where pg denotes the real power delivered to the demand

d and p is the flow of real power in the line [ in the time
period ¢ 1n the case when scenario s is realised, respectlvely
The power flow equations are given as, Vle £,se ¥, te€J

Pro:=b1(0bs:=0ps:) “4)

where b; is susceptance, and b and b’ are the two ends of the
line I, respectively. Voltage angles at the two ends of the line
1= (b, ) are denoted by 0,5, and Oy g, respectively.

B. Demand Model

Let 2 denote the set of real power demands observed at
the exit points of the transmission network, and PDS denote
the real power demand at bus d € 2. Let a;; be pfoportlon
of the demand delivered at bus d at the time period ¢ for the
scenario s. The demand model is given by the following set
of constraints:

(5a)
(5b)

D _ D
Pas:= ad,s,tpd,t
0 < adysyt < ].

C. Operational constraints

Generation from the conventional generators is bounded by
the following inequality constraints:
PG+ (6)

G-
Pg,t—pgst—

where P?},PG[ are the lower and the upper bounds on the

generation output of the generator g during time period f,
respectively.

The ability of a conventional generator g to deviate from its
operating point in short time scales is limited. The limitation
is often expressed as maximum upward and downward ramp
rates [14]. Therefore we limit the amount of change in the
generation depending on the ramp rate of the individual
generators. The ramp rate constraints are given as:

Ry <p§ i1 —Pg (7a)

Pgm - ngJ = R;t (7b)

where R; Ry are the upward and downward ramp rates for
the generator g, respectively. For a single generation unit, the
ramp rates does not depend on the operating point of the
generator but depend on the type of generator, i.e. a generator
can ramp up or ramp down, within its stable generation
limits, independent of its output. However, if the generation
is aggregated and is modelled as a fleet of a particular
type at a node than the ramp rates can be approximated by
a percentage change from its current operating point. This
approximation means that the aggregated generators can be
ramped (up or down) depending on the aggregated generation-
higher generation would imply more units committed and is
able to offer higher flexibility.

The line flow limits are given by the following set of

constraints: Vle L, teJ,s€.F:
P < pl < P ®
where P"** is the real power capacity limit of the line / during

time perlod t. Note that in order to account for the reactive
power, that is not modelled, the real power capacity limit can
be taken as a certain proportion (less than 1) of the thermal
limit expressed in terms of apparent power.

D. Adequacy measure

Let As be the probability of an operating scenario s. We
define an adequacy measure alg ; for a demand d during time
period ¢ as:

a),= Y A )

s

The adequacy measure a'{; , is a measure of the capability of

a power system to deliver required amount of power at node
d while respecting all the constraints.

E. Objective function

Let f (pgt) be the cost function for the conventional gener-
ator g. We define the objective function as:

z=Y (1-a3 )P2 VD, + Y f(pS), (10)

aeo ge¥

where V;t is the value of lost load at node d during time
t. The value of lost load is much greater than the cost of
generation and therefore the first part of objective function is

always dominant.



F. Adequacy assessment problem

The overall formulation of the problem is given as follows:

min ) z(adDY[,pg’yt) (11a)
teg
subject to
1), 3-9) (11b)

Depending on the objective function, the overall problem
is then a linear or a quadratic program (LP or QP). We use
CPLEX 12.06 [15] called from a PYOMO [16] model to solve
the problem.

The next lemma defines the adequacy of a power system.

Lemma 2 (Adequacy of a power system). A power system is

adequate iff
*
> Y (ag) =n"nt,
teg de2

12)

where nP is the number of demand nodes, n’ is the number
of time intervals and (ag t)* is value at the optimal solution
of problem (11).

Proof. Proof is omitted for space reasons. |

V. NUMERICAL TESTS

Consider a 39-bus network as shown in Fig. 3. This test
network is a modified version of the New England test network
from [17]. We have replaced three fossil fuel generators with
the renewable generators at buses 33, 34 and 36, receptively.
Total generation capacity in this network is 7367 MW and
approximately 24% of it is from the RES. Peak demand in
this network is 6254 MW i.e. the absolute peak demand such
that all the variations concern daily peaks that are less than
this value.

Figure 4 shows demand and wind components of operating
scenarios that we use in our stochastic programming model.
Half-hourly time series of total GB system demand and
aggregated wind power generation from each day over the
Winter of 2014/15 are taken from [18] and, for each half-
hour on each day, expressed as a proportion of the single
largest half-hourly demand and wind generation value in the
set. Each daily time series forms one instance of demand and
wind generation in the set of operating scenarios used in the
stochastic optimisation.

Let nP,nV be the number of demand and wind operating
scenarios, respectively. Fig. 5 shows the simulation results
for different values of demand and wind scenarios. Note that
the choice n® = nV =1 corresponds to a deterministic case
in which, for each half-hour, the mean values of demand
and available wind power in that half-hour are used. We
note that the system is adequate for the deterministic case.
Further, when the number of scenarios is increased(chosen
randomly), we see a decrease in the measure of adequacy. In
all cases, there is sufficient generation available somewhere
on the system to meet demand. Inadequacy, i.e. failure to
meet all demand, arises because, in some scenarios, demand

Loads

A Generators

<> Interconnector
O RES

Figure 3. Modified 39 bus system with 6 conventional generators, 3 RES and
1 inter-connector.

in an area relative to the power available from RES in that
area is high and the network’s capacity to import power into
that area to meet demand is insufficient. Note that there is
no significant difference in the values of adequacy measure
for n® =15,n% =30 and nP =50,nV = 100. In this study,
this indicates that nP = 15,7V =30 scenarios are sufficient to
capture the underlying uncertainty and adding more scenarios
does not have a significant affect on the value of the optimal
solution. However, the results are dependent on on which
scenarios have been randomly sampled from the full set.

We report the results of a computational search to find criti-
cal operating snapshots in Figure 6. We generated 200 random
samples for operating scenarios between 1< nP,nV <5, and
a snapshot is classified as critical if adDy , = 0.995. Note that
n®=n"=1 corresponds to 48 operating snapshots, as we
consider half-hourly time series for each day. Figure 6 shows
the min, mean and max number of critical operating states
found for a given number of snapshots that were assessed.
In each case, the mean number of critical operating snapshots
were always less than 10% of the assessed operating snapshots
and the maximum number of critical operating snapshots did
not exceed 18% of the assessed snapshots. We further note
that if we relax the condition for classifying critical operating
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snapshots to adD ,=0.98, the mean never exceeded 2.5% of the

accessed operating conditions.

For the next experiment, we fix the number of operating
scenarios to nP = 10,7V =20 and, for same set of operating
scenarios(which had been randomly sampled from the full set),
vary the ramp rate of the conventional generators. The ramp
rate constraints are defined in percentage where R;—’,t = +x%
means that the generators are allowed to ramp-up or ramp-
down by x% from their current operating point. Figure 7 shows
the results for different ramp rates constraints. We note that the
ramp rate constraints are not active for the value of +20% i.e.
the results are similar to the one shown in Figure 5. The ramp
rate constraints are active for the values R;t <12%. Figure 7
shows the affect on the adequacy measure corresponding to
three different ramp rate constraints. As expected the affect
of ramp rate constraints are at the morning and evening
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Figure 6. Vertical axis show the number of critical operating snapshots. For
a given number of snapshots, 200 random samples were used to obtain min,
mean and max values.

pick-ups of the system demand. This experiment shows that
such temporal constraints are important factor that affect the
adequacy of future power system.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we have proposed a stochastic optimisation
approach in which the expected cost of generation plus value
of lost load is minimised across a range of operating scenarios
in order to provide a measure of adequacy of a power
system given a large set of future operating conditions where
adequacy is quantified as the proportion of demand that is met
while satisfying network and generation limits. Uncertainty
in demand and generation is modelled using scenarios. It is
proposed that it can help a system planner to narrow down the
critical future operating conditions.



1 --n--n-----AAAA......-ana.._. aas
LLI '._‘ ,".
PLI by 5
e 3 . H
L "t ‘.'
o A .
—— 0.95| "a { .
A< s o
j/ .'..“‘.l.l
« onlge
.l
09| g
A RY =420%
gt= =
* Ry, =+10%
+ _
05| | ° Re . =+8% .
| | | | |
0 5 10 15 20
t (hrs.)

Figure 7. Effect of ramp rate constraints on the adequacy of the 39-bus
system. nP =10 nW =20 scenarios are used for this figure.

The sensitivity of adequacy results to the selected subset of
operating scenarios used in the stochastic optimisation and to
generator ramp rate limits has been explored. It is concluded
that care needs to be taken in the selection of operating
scenarios and that ramp rates affect the apparent level of
adequacy. It is suggested that the case of no ramp rate limits
is equivalent to typical present day practice in transmission
expansion planning in which only snapshots of states are
considered and transitions between states are neglected, and
that this potentially misses the need for system facilities
either that provide enhanced flexibility in operation or that
avoid prevention of access, due to network constraints, to
sufficiently flexible resources. Furthermore, it is argued that
this phenomenon will become increasingly important as the
penetration of highly weather dependent renewables increases.

Future work will look at uncertainties corresponding to
fuel prices, asset management and markets, and how these
affect the apparent level and nature of transmission expansion
required to facilitate the electricity market as distinct solely
from ensuring adequate security of supply. (See, for example,
[19]). Current research is focusing on the issues related to the
unit commitment and AC modelling of the proposed approach.
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