Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Zero-voltage-switching buck converter with low-voltage stress using coupled inductor

Chen, Guipeng and Deng, Yan and He, Xiangning and Wang, Yousheng and Zhang, Jiangfeng (2016) Zero-voltage-switching buck converter with low-voltage stress using coupled inductor. IET Power Electronics, 9 (4). pp. 719-727. ISSN 1755-4535

[img]
Preview
Text (Chen-etal-IETPE2016-zero-voltage-switching-buck-converter-low-voltage-stress)
Chen_etal_IETPE2016_zero_voltage_switching_buck_converter_low_voltage_stress.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

This study presents a new zero-voltage-switching (ZVS) buck converter. The proposed converter utilises a coupled inductor to implement the output filter inductor as well as the auxiliary inductor which is commonly employed to realise ZVS for switches. Additional magnetic core for the auxiliary inductor in traditional ZVS converters is eliminated and hence reduced cost is achieved. Moreover, thanks to the series connection between the input and output, the switch voltage stress in the steady state is reduced and thus the ZVS operation can be easier achieved. Then the leakage inductor current circulating in the auxiliary switch is decreased, contributing to reduced conduction losses. In particular, low-voltage rating devices with low on-state resistance can be adopted to further improve efficiency in applications with non-zero output voltage all the time, such as the battery charger. Furthermore, the reverse-recovery problem of the diode is significantly alleviated by the leakage inductor of coupled inductor. In the study, operation principle and steady-state analysis of the proposed converter are presented in detail. Meanwhile, design considerations are given to obtain circuit parameters. Finally, simulations and experiments on a 200 W prototype circuit validate the advantages and effectiveness of the proposed converter.