Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Evaluating a MAS architecture for flexible distribution power flow management

Chen, Minjiang and McArthur, Stephen and Kockar, Ivana and Pitt, Jeremy (2015) Evaluating a MAS architecture for flexible distribution power flow management. In: 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP). IEEE. ISBN 978-1-5090-0191-0

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The challenges associated with controlling power networks are increasing due to integration of renewables, the potential use of storage technologies, and new dynamics introduced via technologies such as electric vehicles and demand side management. Active Network Management (ANM) is a key area to ensure that voltage and thermal limits are not breached. There has been a drive to explore flexible and extensible approaches to delivering enhanced active network management. One suitable approach is Multi-Agent System (MAS) technology that can provide a distributed solution to Smart Grid control. This paper focuses on the design and testing of a MAS able to deliver the ANM function, covering thermal constraint management as an initial application with the ability to integrate voltage control algorithms in the future. It is be used to determine whether intelligent agents are the key to addressing these problems in ways that are flexible, extensible and robust. This system is built on the Presage2 MAS platform, which offers enhanced features and functionality to support the development of MAS for network control, and case studies of thermal overload management are provided for two different distribution networks.