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Abstract

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes, and Kitaev in
[1], who showed that ascent sequences of length n are in 1-to-1 correspondence with (2+ 2)-
free posets of size n. In this paper, we introduce a generalization of ascent sequences, which
we call p-ascent sequences, where p ≥ 1. A sequence (a1, . . . , an) of non-negative integers is
a p-ascent sequence if a0 = 0 and for all i ≥ 2, ai is at most p plus the number of ascents
in (a1, . . . , ai−1). Thus, in our terminology, ascent sequences are 1-ascent sequences. We
generalize a result of the authors in [9] by enumerating p-ascent sequences with respect to
the number of 0s. We also generalize a result of Dukes, Kitaev, Remmel, and Steingŕımsson
in [4] by finding the generating function for the number of p-ascent sequences which have
no consecutive repeated elements. Finally, we initiate the study of pattern-avoiding p-ascent
sequences.

1 Introduction

1.1 Ascent sequences

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes, and Kitaev in [1], who
showed that ascent sequences of length n are in 1-to-1 correspondence with (2+ 2)-free posets
of size n. Let N = {0, 1, . . .} denote the natural numbers and N∗ denote the set of all words
over N. A sequence (a1, . . . , an) ∈ Nn is an ascent sequence of length n if and only if it satisfies
a1 = 0 and ai ∈ [0, 1 + asc(a1, . . . , ai−1)] for all 2 ≤ i ≤ n, where

asc(a1, . . . , ai) = |{j : aj < aj+1; 1 ≤ j < i}|

is the number of ascents in (a1, . . . , an). For instance, (0, 1, 0, 2, 3, 1, 0, 0, 2) is an ascent
sequence which has four ascents. We let Asc denote the set of all ascent sequences, where we
assume that the empty word is also an ascent sequence. For any n ≥ 1, we let Ascn denote the
set of all ascent sequences of length n. If a = (a1, . . . , an) ∈ Ascn, we let |a| = n be the length
of a,

∑
a = a1+ · · ·+an equal the sum of the values of a, |a|0 denote the number of occurrences

of 0 in a, and last(a) = an denote the last letter of a. We say that a = (a1, . . . , an) ∈ Ascn
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is an up-down ascent sequence if a1 < a2 > a3 < a4 > · · · . That is, a = (a1, . . . , an) ∈ Ascn
is an up-down ascent sequence if ai < ai+1 whenever i is odd, and ai > ai+1 whenever i is
even. Throughout this paper, we will often identify a sequence (a1, . . . , an) in Nn with the word
a1 . . . an. Thus, instead of writing, say, (0, 0, 0), we will simply write 000, or 03.

There has been considerable work on ascent sequences in recent years, see, for example,
[1, 4, 6, 9]. Ascent sequences are important because they are in bijection with several other
interesting combinatorial objects. To be more precise, it follows from the work of [1, 3, 5] that
there are natural bijections between Ascn and the following four classes of combinatorial objects:
(1) The set of (2+ 2)-free posets of size n. Here we consider two posets to be equal if they are
isomorphic, and an unlabeled poset is said to be (2+ 2)-free if it does not contain an induced
subposet that is isomorphic to (2+ 2), the union of two disjoint 2-element chains. (2+ 2)-free
posets are known to be in 1-to-1 correspondence with celebrated interval orders.
(2) The set Mn of upper triangular matrices of non-negative integers such that no row or column
contains all zero entries, and the sum of the entries is n.
(3) The set Rn of permutations of [n] = {1, . . . , n}, where in each occurrence of the pattern
231, either the letters corresponding to the 2 and the 3 are nonadjacent, or else the letters
corresponding to the 2 and the 1 are nonadjacent in value. Here, a word contains an occurrence
of the pattern 231 if it contains a subsequence of length 3 that is order-isomorphic to 231.
(4) The set Mchn of Stoimenow matchings on [2n]. A matching of the set [2n] = {1, 2, . . . , 2n}
is a partition of [2n] into subsets of size 2, each of which is called an arc. The smaller number
in an arc is its opener, and the larger one is its closer. A matching is said to be Stoimenow if it
has no pair of arcs {a < b} and {c < d} that satisfy one (or both) of the following conditions:
(a) a = c+1 and b < d and (b) a < c and b = d+1. In other words, a Stoimenow matching has
no pair of arcs such that one is nested within the other and either the openers or the closers of
the two arcs differ by 1.

Remmel [11] showed that there is an interesting connection between the Genocchi numbers
G2n and the median Genocchi numbers H2n−1 and up-down ascent sequences. In particular,
Remmel showed that G2n is the number of up-down ascent sequences of length 2n− 1, H2n−1 is
the number of up-down ascent sequences of length 2n− 2.

Let pn be the number of ascent sequences of length n. Bousquet-Mélou et al. [1] proved that

P (t) =
∑
n≥0

pnt
n =

∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.

In fact, Bousquet-Mélou et al. [1] studied a more general generating function

F (t, u, v) =
∑

w∈Asc

t|w|uasc(w)vlast(w)

and found an explicit form for such a generating function. Kitaev and Remmel [9] studied
a refined version of this generating function. That is, they found an explicit formula for the
generating function

G(t, u, v, z, x) :=
∑

w∈Asc

t|w|uasc(w)vlast(w)z|w|0xrun(w),

where for any ascent sequence w, run(w) = 0 if w = 0n for some n, and run(w) = r if w = 0rxv,
where x is a positive integer and v is a word. Thus run(w) keeps track of the initial sequences
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of 0s that start out w if w does not consist of all zeros. Kitaev and Remmel [9] were able to use
their formula for G(t, u, v, z, x) to prove that

A(t, z) :=
∑

w∈Asc

t|w|z|w|0 = 1 +
∑
n≥0

zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i). (1)

1.2 p-ascent sequences

In this paper, we introduce a generalization of ascent sequences, which we call p-ascent sequences,
where p ≥ 1. A sequence (a1, . . . , an) of non-negative integers is a p-ascent sequence if a0 = 0
and for all i ≥ 2, ai is at most p plus the number of ascents in (a1, . . . , ai−1). Thus, in our
terminology, ascent sequences are 1-ascent sequences.

We note that p-ascent sequences of length n can be encoded in terms of (usual) ascent
sequences of length n + 2p − 2. Indeed, it is easy to see that (a1, a2, . . . , an) is a p-ascent
sequence if and only if (0, 1, 0, 1, . . . , 0, 1, a1, a2, . . . , an) is an ascent sequence, where there are
p − 1 0s and p − 1 1s preceding the a1 = 0. Thus, p-ascent sequences can be thought of as a
subset of ascent sequences of special type, namely, those ascents sequences that start out with
(01)p−10.

The last observation allows to obtain a characterization of elements counted by p-ascent
sequences in (2+ 2)-free posets, the set of restricted permutations Rn, the set of upper triangular
matrices Mn, and the set of Stoimenow matchings Mchn whenever we can characterize the
images of ascent sequences whose corresponding words start with (01)p−10. We do not get into
much detail here, but we provide two examples. We leave the other two cases to the interested
reader to explore using [1, 3, 5]. The (2+ 2)-free posets corresponding to p-ascent sequences
are (2+ 2)-free posets on n+2p− 2 elements with the following property. Right before the last
2p − 1 steps in decomposition of such posets (the decomposition is described in [1]; we do not
provide its details here due to space concerns), one obtains the poset with p minimum elements
and the other p− 1 elements forming the pattern of the poset in Figure 1 corresponding to the
case p = 5. Of course, it would be interesting to give a direct characterization of such posets
(e.g., in terms of forbidden sub-posets) but we were not able to succeed with that. On the other
hand, permutations in Rn corresponding to p-ascent sequences are easily seen via the bijection
given in [1] (not to be provided here due to space concerns) to be the permutations that have
consecutive blocks of elements (2p + 1)(2p − 1) . . . 1 and (2p)(2p − 2) . . . 2 (the former block is
to the left of the later block in all such permutations).

Figure 1: Type of poset obtained right before the last 2p − 1 steps in decomposition of the
(2+ 2)-free poset corresponding to a p-ascent sequence.
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The main goal of this paper is to generalize the results of [9] to p-ascent sequences. That is,
let Asc(p) denote the set of p-ascent sequences, where, again, we consider the empty word to
be a p-ascent sequence for any p ≥ 1. Thus, the set of ascent sequences Asc is Asc(1) in our
terminology. First, we shall study the generating functions

G(p)(t, u, v, z, x) :=
∑

w∈Asc(p)

t|w|uasc(w)vlast(w)z|w|0xrun(w). (2)

We shall find an explicit formula for G(p)(t, u, v, z, x) for any p ≥ 1 (see Section 2) and then we
shall use that formula to prove that

A(p)(t, z) :=
∑

w∈Asc(p)

t|w|z|w|0 = 1 +
∑
n≥0

(
p+ n− 1

n

)
zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i). (3)

Duncan and Steingŕımsson [6] introduced the study of pattern avoidance in ascent sequences.
We initiate a similar study for p-ascent sequences. Given a word w = w1 . . . wn ∈ N∗, we let
red(w) denote the word that is obtained from w by replacing each copy of the i-th smallest
element in w by i − 1. For example, red(238543623) = 015321401. Then we say that a word
u = u1 . . . uj occurs in w if there exist 1 ≤ i1 < · · · < ij ≤ n such that red(wi1wi2 . . . wij ) = u.
We say that w avoids u if u does not occur in w.

For any word u ∈ N∗ such that red(u) = u, we let an,p,u denote the number of p-ascent
sequences a of length n avoiding u and rn,p,u denote the number of sequences counted by an,p,u
with no equal consecutive letters. We prove a number of results about an,p,u and rn,p,u. For
example, we will show that for all p ≥ 1,

rn,p,10 =

(
p+ n− 2

n− 1

)
and an,p,10 =

n−1∑
s=0

(
n− 1

s

)(
p+ s− 1

s

)
.

This paper is organized as follows. In Section 2, we shall find an explicit formula for
G(p)(t, u, v, z, x). Unfortunately, we can not directly set u = 1 in that formula so that in
Section 3, we shall find a formula for G(p)(t, 1, 1, 1, x) via an alternative proof. This formula will
also allow us to find an explicit formula for the generating function for the number of primitive
p-ascent sequences. Finally, in Section 4, we shall study an,p,u and rn,p,u for certain patterns u
of lengths 2 and 3.

2 Main results

For r ≥ 1, let G
(p)
r (t, u, v, z) denote the coefficient of xr in G(p)(t, u, v, z, x). Thus G

(p)
r (t, u, v, z)

is the generating function of those p-ascent sequences that begin with r ≥ 1 0s followed by some

element between 1 and p. We let G
(p,r)
a,ℓ,m,n denote the number of p-ascent sequences of length n,

which begin with r 0s followed by some element between 1 and p, have a ascents, last letter ℓ,
and a total of m zeros. We then let

G(p)
r (t, u, v, z) =

∑
a,ℓ,m≥0, n≥r+1

G
(p,r)
a,ℓ,m,nt

nuavℓzm. (4)
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The sequences of the form 0n contribute a term 1 + tz + (tz)2 + · · · = 1
1−tz to G

(p)
r (t, u, v, z)

since they have no ascents and no initial run of 0s (by definition). Hence

G(p)(t, u, v, x, z) =
1

1− tz
+
∑
r≥1

xrG(p)
r (t, u, v, z). (5)

Lemma 1. For r ≥ 1, the generating function G
(p)
r (t, u, v, z) satisfies

(v − 1− tv(1− u))G(p)
r (t, u, v, z) =

tr+1zruv(vp − 1) + t((v − 1)z − v)G(p)
r (t, u, 1, z) + tuvp+1G(p)

r (t, uv, 1, z). (6)

Proof. Our proof follows the same steps as the proof of the p = 1 case of the result that
was provided in [9]. Fix r ≥ 1. Let x′ = (x1, . . . , xn−1) be an ascent sequence beginning
with r 0s followed by a nonzero element, with a ascents and m zeros, where xn−1 = ℓ. Then
x = (x1, . . . , xn−1, i) is an ascent sequence if and only if i ∈ [0, a+p]. Clearly, x also begins with
r 0s followed by a nonzero element. Now, if i = 0, the sequence x has a ascents and m+1 zeros.
If 1 ≤ i ≤ ℓ, x has a ascents and m zeros. Finally if i ∈ [ℓ+ 1, a+ p], then x has a+ 1 ascents
and m zeros. Counting the sequences 0 . . . 0q with r 0s and 1 ≤ q ≤ p separately, we have

G(p)
r (t, u, v, z) = tr+1uvzr

vp − 1

v − 1
+

∑
a,ℓ,m≥0
n≥r+1

G
(p,r)
a,ℓ,m,nt

n+1

(
uav0zm+1 +

ℓ∑
i=1

uavizm +

a+p∑
i=ℓ+1

ua+1vizm

)

= tr+1uvzr
vp − 1

v − 1
+ t

∑
a,ℓ,m≥0
n≥r+1

G
(p,r)
a,ℓ,m,nt

nuazm
(
z +

vℓ+1 − v

v − 1
+ u

va+p+1 − vℓ+1

v − 1

)

= tr+1uvzr
vp − 1

v − 1
+ tzG(p)

r (t, u, 1, z) +

tv
G

(p)
r (t, u, v, z)−G

(p)
r (t, u, 1, z)

v − 1
+ tuv

vpG
(p)
r (t, uv, 1, z)−G

(p)
r (t, u, v, z)

v − 1
.

The result follows.

Next, just like in the proof of the p = 1 case in [9], we use the kernel method to proceed.
Setting (v−1−tv(1−u)) = 0 and solving for v, we obtain that the substitution v = 1/(1+t(u−1))

will eliminate the left-hand side of (6). We can then solve for G
(p)
r (t, u, 1, z) to obtain that

G(p)
r (t, u, 1, z) =

trzru

γ1δ
p
1

(1− δp1) +
u

γ1δ
p
1

G(p)
r

(
t,

u

δ1
, 1, z

)
(7)

where δ1 = 1 + t(u− 1) and γ1 = 1 + zt(u− 1).
Next we let δk = u− (1− t)k(u−1) and γk = u− (1− zt)(1− t)k−1(u− 1) for k ≥ 1. We also

set δ0 = γ0 = 1. Observe that δ1 = u−(1− t)(u−1) = 1+ t(u−1) and γ1 = u−(1−zt)(u−1) =
1 + zt(u− 1).
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For any function of f(u), we shall write f(u)|u= u
δk

for f(u/δk). It is then easy to check that

δs|u= u
δk

=
δs+k

δk
, γs|u= u

δk
=

γs+k

δk
,

u

δs
|u= u

δk
=

u

δs+k
, and

(u− 1)|u= u
δk

=
(1− t)k(u− 1)

δk
.

Using these relations, one can iterate the recursion (7). For example,

uk

γ1 · · · γkδpk
G(p)

r (t,
u

δk
, 1, z) =

uk

γ1 . . . γkδ
p
k

 trzr u
δk

(
1− δpk+1

δpk

)
γk+1

δk

δpk+1

δpk

+

u
δk

γk+1

δk

δpk+1

δpk

G(p)
r

(
t,

u

δk+1
, 1, z

)
=

trzruk+1
(
1− δpk+1

δpk

)
γ1 · · · γk+1δ

p
k+1

+
uk+1

γ1 · · · γk+1δ
p
k+1

G(p)
r

(
t,

u

δk+1
, 1, z

)
.

Thus, by iterating recursion (7), we can derive that

G(p)
r (t, u, 1, z) =

trzru(1− δp1)

γ1δ
p
1

+
∞∑
k=2

trzruk
(
1− δpk

δpk−1

)
γ1 · · · γkδpk

. (8)

Note that since δ0 = 1, we can rewrite
tr+1zru(1− δp1)

γ1δ
p
1

as
trzru(δp0 − δp1)

γ1δ
p
0δ

p
1

and we can rewrite

trzruk
(
1− δpk

δpk−1

)
γ1 · · · γkδpk

as
trzru(δpk−1 − δpk)

γ1 · · · γkδpk−1δ
p
k

. Thus we have proved the following theorem.

Theorem 2.

G(p)
r (t, u, 1, z) =

∞∑
k=1

trzruk(δpk−1 − δpk)

γ1 · · · γkδpk−1δ
p
k

. (9)

Note that we can rewrite (6) as

G(p)
r (t, u, v, z) =

tr+1zruv(vp − 1)

vδ1 − 1
+
t(z(v − 1)− v)

vδ1 − 1
G(p)

r (t, u, 1, z)+
uvp+1t

vδ1 − 1
G(p)

r (t, uv, 1, z). (10)

For s ≥ 1, we let

δ̄s = δs|u=uv = uv − (1− t)s(uv − 1) and γ̄s = γs|u=uv = uv − (1− zt)(1− t)s−1(uv − 1)

and set δ̄0 = γ̄0 = 1. Then using (10) and (9), we have the following theorem.

Theorem 3. For all r ≥ 1,

G(p)
r (t, u, v, z) =

trzr

 tuv(vp − 1)

vδ1 − 1
+

t(z(v − 1)− v)

vδ1 − 1

∑
k≥1

(δpk−1 − δpk)

γ1 · · · γkδpk−1δ
p
k

+
tuvp+1

vδ1 − 1

∑
k≥1

(δ̄pk−1 − δ̄pk)

γ̄1 · · · γ̄kδ̄pk−1δ̄
p
k

 . (11)
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It is easy to see from Theorem 3 that G(p)
r (t, u, v, z) = tr−1zr−1G

(p)
1 (t, u, v, z). This is also

easy to see combinatorially since every ascent sequence counted by G
(p)
r (t, u, v, z) is of the form

0r−1a, where a is a p-ascent sequence counted by G
(p)
1 (t, u, v, z). Hence

G(p)(t, u, v, z, x) =
1

1− tz
+
∑
r≥1

G(p)
r (t, u, v, z)xr =

1

1− tz
+
∑
r≥1

tr−1zr−1G
(p)
1 (t, u, v, z)xr

=
1

1− tz
+

x

1− tzx
G

(p)
1 (t, u, v, z).

Thus we have the following theorem.

Theorem 4. G(p)(t, u, v, z, x) =
1

1− tz
+

x

1− tzx
G

(p)
1 (t, u, v, z).

3 Specializations of our general results

In this section, we shall compute the generating function for p-ascent sequences by length and
the number of zeros.

For n ≥ 1, let H
(p)
a,b,ℓ,n denote the number of p-ascent sequences of length n with a ascents

and b zeros which have last letter ℓ. Then we first wish to compute

H(p)(t, u, v, z) =
∑

n≥1, a,b,ℓ≥0

H
(p)
a,b,ℓ,nu

azbvℓtn. (12)

Using the same reasoning as in the previous section, we see that

H(p)(t, u, v, z) = tz +
∑

a,b,ℓ≥0
n≥1

H
(p)
a,b,ℓ,nt

n+1

(
uav0zb+1 +

ℓ∑
i=1

uavizb +

a+p∑
i=ℓ+1

ua+1vizb

)

= tz + t
∑

a,b,ℓ≥0
n≥r+1

H
(p)
a,b,ℓ,nt

nuazb
(
z +

vℓ+1 − v

v − 1
+ u

va+p+1 − vℓ+1

v − 1

)

= tz + tzH(p)(t, u, 1, z) +
tv

v − 1

(
H(p)(t, u, v, z)−H(p)(t, u, 1, z)

)
+

tuv

v − 1

(
H(p)(t, uv, 1, z)−H(p)(t, u, v, z)

)
.

Solving for H(p)(t, u, v, z), we see that we have the following lemma.

Lemma 5.

(vδ1 − 1)H(p)(t, u, v, z) =

(v − 1)tz + t(z(v − 1)− v)H(p)(t, u, 1, z) + tuvp+1H(p)(t, uv, 1, z). (13)

Again, the substitution v = 1
δ1

eliminates the left-hand side of (13). We can then solve for

H(p)(u, 1, z, t) to obtain the recursion

H(p)(t, u, 1, z) =
(1− δ1)z

γ1
+

u

γ1δ
p
1

H(p)

(
t,

u

δ1
, 1, z

)
. (14)

7



We can iterate the recursion (14) in the same manner as we iterated the recursion (7) in the
previous section to prove that

H(p)(t, u, 1, z) =
∑
n≥0

(δn − δn+1)zu
n

γ1 · · · γn+1δ
p
n

. (15)

We can easily check that for all n ≥ 0, δn − δn+1 = (1− u)t(1− t)n. Thus, as a power series in
u, we can conclude the following.

Theorem 6. H(p)(t, u, 1, z) =

∞∑
n=0

zt(1− u)un(1− t)n

δpn
∏n+1

i=1 γi
.

We would like to set u = 1 in the power series
∑∞

s=0
zt(1−u)us(1−t)s

δs
∏s+1

i=1 γi
, but the factor (1− u) in

the series does not allow us to do that in this form. Thus our next step is to rewrite the series
in a form where it is obvious that we can set u = 1 in the series. To that end, observe that for
k ≥ 1, δk = u− (1− t)k(u− 1) = 1 + u− 1− (1− t)k(u− 1) = 1− ((1− t)k − 1)(u− 1), so that
by Newton’s binomial theorem,

1

δpk
=

(
1

1− (u− 1)((1− t)k − 1)

)p

=

∞∑
n=0

(
p− 1 + n

n

)
((u− 1)((1− t)k − 1))n

=

∞∑
n=0

(
p− 1 + n

n

)
(u− 1)n

(
n∑

m=0

(−1)n−m

(
n

m

)
(1− t)km

)
. (16)

Substituting (16) into Theorem 6, we see that

H(p)(t, u, 1, z) =

zt(1− u)

γ1
+
∑
k≥1

zt(1− u)uk(1− t)k∏k+1
i=1 γi

∑
n≥0

(
p− 1 + n

n

)
(u− 1)n

n∑
m=0

(−1)n−m

(
n

m

)
(1− t)km =

zt(1− u)

γ1
+
∑
n≥0

n∑
m=0

(−1)n−m−1

(
n

m

)
(u− 1)n−mzt

∑
k≥1

(u− 1)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

=

zt(1− u)

γ1
+
∑
n≥0

(
p− 1 + n

n

) n∑
m=0

(−1)n−m−1

(
n

m

)
(u− 1)n−m zt

(1− zt)m+1
×

∑
k≥1

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

.

In [9], we have proved the following lemma.

Lemma 7.∑
k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

= −
m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i).

It thus follows that

8



H(p)(t, u, 1, z) =
zt(1− u)

γ1
+
∑
n≥0

(
p− 1 + n

n

) n∑
m=0

(−1)n−m−1

(
n

m

)
(u− 1)n−m zt

(1− zt)m+1
×−(u− 1)m+1(1− zt)m+1

γ1
−

m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− (1− t)i)

 .

There is no problem in setting u = 1 in this expression to obtain that

H(p)(t, 1, 1, z) =
∑
n≥0

(
p− 1 + n

n

)
zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i). (17)

Clearly, our definitions ensure that 1+H(t, 1, 1, z) = A(p)(t, z) as defined in the introduction
so that we have the following theorem.

Theorem 8. For all p ≥ 1,

A(p)(t, z) =
∑

w∈Asc(p)

t|w|z|w|0 = 1 +
∑
n≥0

(
p− 1 + n

n

)
zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i). (18)

The case p = 1 in Theorem 8 gives exactly the same formula for A(1)(t, z) as that derived in
[9], which should be the case. We also note that the authors conjectured in [9] that

1 +

∞∑
k=0

zt

(1− zt)k+1

k∏
i=1

(1− ((1− t)i) = 1 +

∞∑
m=1

m∏
i=1

(1− (1− t)i−1(1− zt)). (19)

This was proved independently by Jeĺınek [7], Levande [10], and Yan [13]. It would be interesting
to find an analogue of this relation for p > 1.

Next we can use the same techniques as in [4] to find the generating function for the number
of primitive p-ascent sequences. That is, let rn,p denote the number of p-ascent sequences a of
length n such that a has no consecutive repeated letters and an,p denote the number of p-ascent
sequences a of length n.

If R(p)(t) = 1 +
∑
n≥1

rn,pt
n and A(p)(t) = 1 +

∑
n≥1

an,pt
n, then it is easy to see that

A(p)(t) = A(p)(t, 1) = R(p)

(
t

1− t

)
= R(p)(t+ t2 + · · · ), (20)

since each element in a primitive p-ascent sequence can be repeated any specified number of
times. Setting x = t

1−t so that t = x
1+x , we see that (20) implies that

R(p)(x) = A(p)

(
x

1 + x

)
. (21)

Using our formula (18) for A(p)(t) and simplifying will yeild the following theorem.

Theorem 9. For all p ≥ 1, R(p)(t) = 1 + t

∞∑
n=0

(
p− 1 + n

n

)
(1 + t)n

n∏
i=1

(
1−

(
1

1 + t

)i
)
.

9



Finally if we replace t by t + t2 + · · · + tk = t (t
k−1)
t−1 in Theorem 9, then we can obtain the

generating function for the number of p-ascent sequences a such that the maximum length of a
consecutive sequence of repeated letters is less than or equal to k:

1 + t
tk − 1

t− 1

∞∑
n=0

(
p− 1 + n

n

)(
tk+1 − 1

t− 1

)n n∏
i=1

(
1−

(
t− 1

tk+1 − 1

)i
)
. (22)

4 Pattern avoidance in p-ascent sequences

In this section, we shall prove some simple results about pattern avoidance in p-ascent sequences
thus extending the studies initiated in [6] for ascent sequences.

We begin by considering patterns of length 2. There are three such patterns, 00, 01, and 10.
Recall that an,p,u (resp., rn,p,u) is the number of (resp., primitive) p-ascent sequences of length n
that avoid a pattern u. The only p-ascent sequences that avoid 01 are the sequences that consist
of all zeros so that an,p,01 = 1 for all n, p ≥ 1 and rn,p,01 equals 1 if n = 1 and 0 otherwise.

10-avoiding p-ascent sequences
Let us consider rn,p,10. In this case, we are looking for p-ascent sequences which avoid 10
and have no repeated letters. It is clear that any such a sequence a must be of the form
a = a1 . . . an, where 0 = a1 < a2 < · · · < an. For each 1 ≤ i ≤ n, the word a1 . . . ai has
i− 1 ascents so that ai+1 ≤ i− 1 + p. It follows that rn,p,10 counts all words a1a2 . . . an, where

0 = a1 < a2 < · · · < an ≤ p+ n− 2 so that rn,p,10 =

(
p+ n− 2

n− 1

)
. Hence by Newton’s Binomial

Theorem,

R
(p)
10 (t) = 1 +

∑
n≥1

(
p− 1 + n− 1

n− 1

)
tn = 1 +

t

(1− t)p
. (23)

It is easy to see that the p-ascent sequences counted by an,p,10 arise by taking a sequence
d1 . . . ds counted by rs,p,10 for some s ≤ n and replacing each letter di by one or more copies so
that the resulting word is of length n. The number of ways to do this for a given d1 . . . ds is the
number of solutions to b1 + · · ·+ bs = n, where bi ≥ 1, which is

(
n−1
s−1

)
. Thus

an,p,10 =

n∑
s=1

(
n− 1

s

)
rs,p,10 =

n∑
s=1

(
n− 1

s− 1

)(
p+ s− 2

s− 1

)
=

n−1∑
s=0

(
n− 1

s

)(
p+ s− 1

s

)
. (24)

It also follows that A
(p)
10 (t) = R

(p)
10

(
t

1− t

)
= 1 +

t(1− t)p−1

(1− 2t)p
.

We note that the sequence (an,2,10)n≥1 starts out 1, 3, 8, 20, 48, 112, 256, . . . and this is the
sequence A001792 in the OEIS [12] which has many combinatorial interpretations.

00-avoiding p-ascent sequences
If a p-ascent sequence a = a1 . . . an avoids 00, then all its elements must be distinct. Note that
for each 2 ≤ i ≤ n, a1 . . . ai−1 can have at most i− 2 ascents so that ai ≤ p+ i− 2. Let max(a)
denote the maximum of {a1, . . . , an}. If a avoids 00, then by the pigeon hole principle, it must
be the case that max(a) ≥ n− 1. Thus, if a avoids 00, then n− 1 ≤ max(a) ≤ n+ p− 2.
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Now consider 2-ascent sequences that avoid 00. Suppose that a = a1 . . . an is a 2-ascent
sequence which avoids 00. Then we know that max(a) ∈ {n− 1, n}. If max(a) = n, a must be
strictly increasing and there must be some smallest k ≥ 1 such that ak = k, In such a situation,
it is easy to see that a must be of the form 0, 1, . . . , k − 2, k, k + 1, . . . n. Thus there are n − 1
2-ascent sequences a of length n such that a avoids 00 and max(a) = n.

Next, suppose that a = a1 . . . an is a 2-ascent sequence that avoids 00 and max(a) = n− 1.
Then there are two cases. Namely, it could be that there is no k ≤ n such that ak = k. In that
case, a is the increasing sequence a = 012 . . . (n− 1). Otherwise, let j equal the smallest i such
that ai = i. Then a must be strictly increasing up to aj so that a starts out 012 . . . (j − 2)j.
Since max(a) = n − 1, it follows that {a1, . . . , an} = {0, 1, . . . , n − 1} so that there must be
some j < k ≤ n such that ak = j − 1. In that case, ak−1 > ak so that a has at least one
descent. However, if max(a) = n − 1, a can have at most one descent. Thus, once we have
placed j−1, the remaining elements must be placed in increasing order. It is then easy to check
that no matter where we place j − 1 after position j, the resulting sequence will be a 2-ascent
sequence. It follows that the number of 2-ascent sequences which avoid 00 and have one descent
is
∑n−1

j=1 (n− j) =
(
n−1
2

)
.

Thus, we have the following theorem.

Theorem 10. For all n ≥ 1, an,2,00 = n− 1 + 1 +

(
n− 1

2

)
= 1 +

(
n

2

)
.

The sequence (an,3,00)n≥1 starts out 1, 3, 9, 24, 57, 122, 239, 435, 745, 1213, 1893, 2850, . . ., which

is the sequence A089830 in the OEIS [12], whose generating function is 1−3x+6x2−5x3+3x4−x5

(1−x)6
.

In this case, if a = a1 . . . an is a 3-ascent sequence which avoids 00, then we know that
n− 1 ≤ max(a) ≤ n+ 1. We shall prove that

∑
n≥1

an,3,00x
n =

x(1− 3x+ 6x2 − 5x3 + 3x4 − x5)

(1− x)6

by classifying the 3-ascent sequences a which avoid 00 by the max(a) and des(a), where des(a)
is the number of descents in a, that is, the number of elements followed by smaller elements.

Case 1. des(a) = 0.
Suppose that a = a1 . . . an is an increasing 3-ascent sequence that avoids 00. Now, if max(a) =
n−1, then a = 012 . . . (n−1). If max(a) = n, then exactly one element from [n] = {1, . . . , n−1}
does not appear in a. If i does not appear in a, then a = 01 . . . (i− 1)(i+ 1)(i+ 2) . . . n, which
is a 3-ascent sequence. Thus, there are n − 1 increasing 3-ascent sequences whose maximum
is n. Finally, if max(a) = n + 1, then two elements from [n] do not appear in a. Again, it is
easy to check that no matter which two elements from [n] we leave out, the resulting increasing
sequence will be a 3-ascent sequence. Thus, there are

(
n
2

)
increasing 3-ascent sequences whose

maximum is n+ 1. Therefore, the total number of increasing 3-ascents sequences of length n is
1 + (n− 1) +

(
n
2

)
=
(
n+1
2

)
.

Case 2. des(a) = 1.
In this case, if a = a1 . . . an is a 3-ascent sequence such that des(a) = 1 and a avoids 00, then
max(a) ∈ {n−1, n}. Suppose that aj > aj−1. Then we have two subcases depending on whether
aj = j or aj = j + 1.

11



If aj = j + 1, then there must be two elements 1 ≤ u < v ≤ j, which do not appear in
a1 . . . aj . Clearly, we have

(
j
2

)
ways to pick u and v. We then have three subcases depending on

whether u and v appear in a. If both u and v appear in a, then a must start out a1 . . . ajuv so
that aj+3 . . . an must be an increasing sequence from [n]−[j+1] of length n−j−2. Clearly, there
are n− j− 1 such subsequences and it is easy to check that we can attach any such subsequence
at the end of the sequence a1 . . . ajuv to obtain a 3-ascent sequence avoiding 00. If u appears in
a, but v does not appear in a, then a must be of the form a1 . . . ajuγ, where γ is the increasing
sequence (j + 2)(j + 3) . . . n. Similarly if v appears in a, but u does not appear in a. then a
must be of the form a1 . . . ajvγ, where γ is the increasing sequence (j+2)(j+3) . . . n. It follows
that the number of 3-ascent sequences is

∑n−1
j=2

(
j
2

)
(n− j + 1). One can verify by Mathematica

that
∑n−1

j=2

(
j
2

)
(n− j + 1) =

(
n
3

)
+
(
n+1
4

)
.

If aj = j, there is one element u in [j] which does not appear in a1 . . . aj , so that the sequence
must start out a1 . . . aju. The rest of the sequence must be the increasing rearrangement of
{j+1, . . . , n}−{v} for some v ∈ {j+1, . . . , n}. Thus, we have j−1 choices for u and n−j choices
for v. Hence the number of 3-ascent sequences a where des(a) = 1 and for some j, aj > aj+1 and
aj = j is

∑n−1
j=2 (j − 1)(n− j). One can check by Mathematica that

∑n−1
j=2 (j − 1)(n− j) =

(
n
3

)
.

Thus, the number of 3-ascent sequences with one descent, which avoid 00 is 2
(
n
3

)
+
(
n+1
4

)
.

Case 3 des(a) = 2.
In this case, it must be that max(a) = n − 1, so that a must contain all the elements in the
sequence 0, 1, . . . , n− 1. Now, suppose that the first descent of a occurs at position j. Then we
have two cases depending on whether aj = j or aj = j + 1.

If aj = j, there must be some u, where 1 ≤ u ≤ j − 1, which does not appear in a1 . . . aj
and aj+1 = u. We have j − 1 choices for u. The sequence aj+2 . . . an must be a rearrangement
of (j + 1)(j + 2) . . . (n − 1), which has one descent. The bottom element of the descent pair
that occurs in aj+2 . . . an must equal s for some j + 1 ≤ s ≤ n − 2 and the top element of the
descent must equal t, where s + 1 ≤ t ≤ n − 1. It is easy to check that any choice of s and
t will yield a 3-ascent sequence, so that the number of choices for the sequence aj+2 . . . an is∑n−2

s=(j+1) n − 1 − s =
(
n−1−j

2

)
. It follows that the number of 3-ascent sequences in this case is∑n−2

j=2 (j − 1)
(
n−1−j

2

)
, which can be shown by Mathematica to be equal to

(
n−1
4

)
.

If aj = j+1, then there must be two elements 1 ≤ u ≤ v ≤ j that do not appear in a1 . . . aj .
We have

(
j
2

)
ways to choose u and v. We then have two further subcases depending on whether

aj+1 = v or aj+1 = v.
If aj+1 = v, then our sequences start out a1 . . . aj = (j + 1)v and where every u occurs in

the sequence aj+2 . . . an, it will cause a second descent so that there are n − j − 1 choices in
this case. If aj+1 = u, then the sequence aj+2 . . . an must be a rearrangemetn of the sequence
v(j +2)(j +3) . . . (n− 1) with one descent and we can argue as we did in the case where aj = j
that there are

(
n−j−1

2

)
choices for the sequence aj+2 . . . an. Thus the total number of choices in

the case where aj = j + 1 is
∑n−2

j=1

(
j
2

)(
n−j
2

)
=
(
n+1
5

)
where the last equality can be checked by

Mathematica.
Putting all the cases together, we see that the number of 3-ascent sequences of length n,

which avoid 00 is equal to(
n+ 1

2

)
+ 2

(
n

3

)
+

(
n+ 1

4

)
+

(
n− 1

4

)
+

(
n+ 1

5

)
=

(
n+ 1

2

)
+ 2

(
n

3

)
+

(
n− 1

4

)
+

(
n+ 2

5

)
.

Thus we have the following theorem.
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Theorem 11. For all n ≥ 1, an,3,00 =

(
n+ 1

2

)
+ 2

(
n

3

)
+

(
n− 1

4

)
+

(
n+ 2

5

)
,

Note that it follows from Newton’s binomial theorem that∑
n≥1

(
n+ 1

2

)
xn =

x

(1− x)3
,
∑
n≥1

2

(
n

3

)
xn =

2x3

(1− x)4
,

∑
n≥1

(
n− 1

4

)
xn =

x5

(1− x)5
, and

∑
n≥1

(
n+ 2

5

)
xn =

x3

(1− x)6
.

Adding these series together and simplifying, we have the following theorem.

Theorem 12.
∑
n≥1

an,3,00x
n =

x(1− 3x+ 6x2 − 5x3 + 3x4 − x5)

(1− x)6
.

We note that Burstein and Mansour [2] gave a combinatorial interpretation to the n-th
element in sequence A089830 as the number of words w = w1 . . . wn−1 ∈ {1, 2, 3}∗, which avoid
the vincular pattern 21-2 (also denoted in the literature 212; see [8]). That is, there are no
subsequences of the form wiwi+1wj in w such that i + 1 < j and wi = wj > wi+1. We ask
the question whether one can construct a simple bijection between such words and the set of
3-ascent sequences of length n, which avoid 00.

We note that the sequence (an,4,00)n≥1 starts out 1, 4, 16, 58, 190, 564, 1526, 3794 . . .. This is
the sequence A263851 in the OEIS [12].

012-avoiding p-ascent sequences Now suppose that a = a1 . . . an is a p-ascent sequence
such that a avoids 012. The first thing to observe is that if ai = 1 for some i, then since a1 = 0,
it must be the case that aj ∈ {0, 1} for all j ≥ i. The second thing to observe is that ai ≤ p for
all i. That is, the only way that a can have an element ak > p is if a1 . . . ak−1 has at least ak − p
ascents. Since the first ascent in a p-ascent sequence must be of one of the forms 01, 02, . . . , 0p,
such an ascent sequence would not avoid 012.

2-ascent sequences. Now, suppose that a = a1 . . . an is a 2-ascent sequence such that a avoids
012. If a has no 1s, then ai ∈ {0, 2} for all i ≥ 2, so that there are 2n−1 such 2-ascent sequences.
If a contains a 1, then let k be the smallest j such that aj equals 1. It then follows that ai ∈ {0, 2}
for 2 ≤ i < k and aj ∈ {0, 1} for k < j ≤ n. Thus, there are 2n−2 such 2-ascent sequences, so
that the number of 2-ascent sequences that avoid 012 and contain a 1 is (n− 1)2n−2. Hence, for
n ≥ 1,

an,2,012 = 2n−1 + (n− 1)2n−2 = (n+ 1)2n−2. (25)

We note that the sequence (an,2,012)n≥1 starts out 1, 3, 8, 20, 48, 112, 256, . . ., and this is,
again, as in the case of (an,2,10)n≥1, the sequence A001792 in the OEIS [12]. Next, we will
explain this fact combinatorially.

It is easy to see that each sequence counted by (an,2,012)n≥1 can be obtained by taking a
number of 2s (maybe none) followed by a number of 1s, and placing any number of 0s (maybe
none) between these 1s and 2s making sure that the total length of the sequence is n, and this
sequence begins with a 0. On the other hand, it is also straightforward to see that sequences
counted by (an,2,10)n≥1 are of two types: they are either of the form

0 . . . 0︸ ︷︷ ︸
i0≥1

1 . . . 1︸ ︷︷ ︸
i1≥1

2 . . . 2︸ ︷︷ ︸
i2≥1

. . . a . . . a︸ ︷︷ ︸
ia≥1

, (26)
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where 0, 1, . . . , a all appear or of the form

0 . . . 0︸ ︷︷ ︸
i0≥1

1 . . . 1︸ ︷︷ ︸
i1≥1

2 . . . 2︸ ︷︷ ︸
i2≥1

. . . a . . . a︸ ︷︷ ︸
ia≥1

(a+ 2) . . . (a+ 2)︸ ︷︷ ︸
ia+2≥1

(a+ 3) . . . (a+ 3)︸ ︷︷ ︸
ia+3≥1

(a+ 4) . . . (a+ 4)︸ ︷︷ ︸
ia+4≥1

. . . , (27)

where a ≥ 0 exists. A bijection between the classes of sequences is given by turning sequences
of the form (26) into

0 . . . 0︸ ︷︷ ︸
i0

2 0 . . . 0︸ ︷︷ ︸
i1−1

2 0 . . . 0︸ ︷︷ ︸
i2−1

. . . 2 0 . . . 0︸ ︷︷ ︸
ia−1

,

and the sequences of the form (27) into

0 . . . 0︸ ︷︷ ︸
i0

2 0 . . . 0︸ ︷︷ ︸
i1−1

2 0 . . . 0︸ ︷︷ ︸
i2−1

. . . 2 0 . . . 0︸ ︷︷ ︸
ia−1

1 0 . . . 0︸ ︷︷ ︸
ia+2−1

1 0 . . . 0︸ ︷︷ ︸
ia+3−1

1 0 . . . 0︸ ︷︷ ︸
ia+4−1

. . . .

3-ascent sequences. Now, suppose that a = a1 . . . an is a 3-ascent sequence such that a avoids
012. If a has no 1s, then ai ∈ {0, 2, 3} for all i ≥ 2. It is then easy to see that if b1 . . . bn is
the sequence that arises from a1 . . . an by replacing each 2 by a 1 and each 3 by a 2, then b is a
2-ascent sequence that avoids 012. Thus, there are (n + 1)2n−2 such sequences. Now, suppose
that a contains a 1. Then let k be the smallest j such that aj equals 1. It then follows that
ai ∈ {0, 2, 3} for 2 ≤ i < k and aj ∈ {0, 1} for k < j ≤ n. It is then easy to see that if b1 . . . bk−1

is the sequence that arises from a1 . . . ak−1 by replacing each 2 by a 1 and each 3 by a 2, then
b1 . . . bk−1 is a 2-ascent sequence that avoids 012. Thus, from our argument above, it follows
that there are k2k−3 choices for a1 . . . ak−1 and 2n−k choices for ak+1 . . . an. Therefore, given k,
we have k2n−3 choices for a. Thus,

an,3,012 = (n+ 1)2n−2 +
n∑

k=2

k2n−3 = 2n−4(n2 + 5n+ 2) (28)

where the last equality can be checked by Mathematica. We note that the sequence (an,3,012)n≥1

starts out 1, 4, 13, 38, 104, 272, 688, . . . and this is the sequence A049611 in the OEIS [12] having
several combinatorial interpretations.

p-ascent sequences for an arbitrary p. In general, we can obtain a simple recursion for
an,p,012. That is, suppose that a = (a1, . . . , an) is a p-ascent sequence such that a avoids 012.
Now, if a has no 1s, then ai ∈ {0, 2, 3, . . . , p} for all i ≥ 2. It is then easy to see that if
b = (b1, . . . , bn) is the sequence that arises from a by replacing each i ≥ 2, by an i − 1, then b
is a (p − 1)-ascent sequences that avoids 012. Thus, there are an,p−1,012 such sequences. Now
suppose that a contains a 1. Then let k be the smallest j such that aj equals 1. It then follows
that ai ∈ {0, 2, 3, . . . , p} for 2 ≤ i < k and aj ∈ {0, 1} for k < j ≤ n. It is then easy to see that
if b1 . . . bk−1 is the sequence that arises from a1 . . . ak−1 by replacing each i ≥ 2 by an i− 1, then
b1 . . . bk−1 is a 2-ascent sequences that avoids 012. It follows that there are ak−1,p−1,012 choices
for a1 . . . ak−1 and 2n−k choices for ak+1 . . . an. Thus, given k, we have 2n−kak−1,p−1,012 choices
for a. It follows that

an,p,012 = an,p−1,012 +
n∑

k=2

ak−1,p−1,0122
n−k. (29)

For example, using our formula for an,3,012, one can compute that an,4,012 = 2n−5

3 (n3 + 12n2 +
29n+ 6). The sequence (an,4,012)n≥1 starts out 1, 5, 19, 63, 192, 552, 1520, 4048, 10496, 26264, . . .
and this is the sequence A049612 in the OEIS [12].
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