Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

MOSFET parallel-connection of low-voltage MMC for LVDC distribution networks

Zhong, Yanni and Roscoe, Nina and Holliday, Derrick and Finney, Stephen (2016) MOSFET parallel-connection of low-voltage MMC for LVDC distribution networks. In: 8th IET International Conference on Power Electronics, Machines and Drives, 2016-04-19 - 2016-04-21, The Hilton Hotel.

[img]
Preview
Text (Zhong-etal-IET-PEMD-2016-MOSFET-parallel-connection-of-low-voltage-MMC)
Zhong_etal_IET_PEMD_2016_MOSFET_parallel_connection_of_low_voltage_MMC.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

A highly efficient DC-AC converter is key to the success of low-voltage DC (LVDC) distribution networks. Calculated power losses in a conventional IGBT 2-level converter, a SiC MOSFET 2-level converter, a Si MOSFET modular multilevel converter (MMC) and a GaN HEMT MMC are compared. Calculations suggest that the parallel-connected Si MOSFET MMC may be the most efficient topology for this LVDC application. In this paper, the current unbalance limits for the parallel-connected MOSFETs and the optimal number of parallel-connected MOSFETs for MMC are investigated. Experimental results are presented for current sharing in parallel-connected MOSFETs and for the verification of power loss in a single Si MMC module.