Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Protection challenges in future converter dominated power systems : demonstration through simulation and hardware tests

Li, Ruiqi and Booth, Campbell and Dysko, Adam and Roscoe, Andrew and Urdal, Helge and Zhu, Jiebei (2015) Protection challenges in future converter dominated power systems : demonstration through simulation and hardware tests. In: International Conference on Renewable Power Generation (RPG 2015). IET. ISBN 978-1-78561-040-0

[img]
Preview
Text (Li-etal-IET-RPG-2015-Protection-challenges-in-future-converter-dominated-power-systems)
Li_etal_IET_RPG_2015_Protection_challenges_in_future_converter_dominated_power_systems.pdf - Accepted Author Manuscript

Download (625kB) | Preview

Abstract

A model of a converter source capable of providing a controllable fault response is introduced to analyse the performance of protection in future power system scenarios. Using a reduced power system model of the National Grid transmission system in Great Britain, a comprehensive set of tests of protection performance are performed to verify how protection systems may be impacted by the introduction of converter-interfaced energy sources and infeeds. Converters with a range of different types of fault response are modelled, as grid codes defining converter response to AC system fault are not completely specific at the present time. The simulated data are injected into an actual protection relay through secondary injection equipment and also to a dynamic protection relay model through simulation, and the results are analysed and compared. The initial results show that there can be a degree of negative influence on protection system performance in converter-dominated scenarios where the power system is relatively “weak”, primarily in the form of longer operating times in certain scenarios. The paper concludes with analysis of results and an overview of on-going and future work to broaden the investigations.