Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen

Yakushev, M. V. and Krustok, J. and Grossberg, M. and Volkov, V. A. and Mudryi, A. V. and Martin, R. W. (2016) A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen. Journal of Physics D: Applied Physics, 49 (10). ISSN 0022-3727

[img]
Preview
Text (Yakushev-etal-JPD2016-a-photoluminescence-study-of-CuInSe2-single-crystals-ion)
Yakushev_etal_JPD2016_a_photoluminescence_study_of_CuInSe2_single_crystals_ion.pdf - Accepted Author Manuscript

Download (326kB) | Preview

Abstract

CuInSe2 single crystals ion implanted with 5 keV hydrogen at doses from 3 × 1014 to 1016 cm-2 are studied by photoluminescence (PL). The PL spectra before and after implantation reveal two bands, a main dominant band centred at 0.96 eV and a lower intensity band centred at 0.93 eV. Detailed analysis of the shape of these bands, their temperature and excitation intensity dependencies allow the recombination mechanisms to be identified as band-to-tail (BT) and band-to-impurity (BI), respectively. The implantation causes gradual red shifts of the bands increasing linearly with the dose. The average depth of potential fluctuations is also estimated to increase with the dose and saturates for doses above 1015 cm-2. A model is proposed which associates the potential fluctuations with the antisite defects copper on indium site and indium on copper site. The saturation is explained by full randomization of copper and indium atoms on the cation sub-lattice.