Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen

Yakushev, M. V. and Krustok, J. and Grossberg, M. and Volkov, V. A. and Mudryi, A. V. and Martin, R. W. (2016) A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen. Journal of Physics D: Applied Physics, 49 (10). ISSN 0022-3727

[img]
Preview
Text (Yakushev-etal-JPD2016-a-photoluminescence-study-of-CuInSe2-single-crystals-ion)
Yakushev_etal_JPD2016_a_photoluminescence_study_of_CuInSe2_single_crystals_ion.pdf - Accepted Author Manuscript

Download (326kB) | Preview

Abstract

CuInSe2 single crystals ion implanted with 5 keV hydrogen at doses from 3 × 1014 to 1016 cm-2 are studied by photoluminescence (PL). The PL spectra before and after implantation reveal two bands, a main dominant band centred at 0.96 eV and a lower intensity band centred at 0.93 eV. Detailed analysis of the shape of these bands, their temperature and excitation intensity dependencies allow the recombination mechanisms to be identified as band-to-tail (BT) and band-to-impurity (BI), respectively. The implantation causes gradual red shifts of the bands increasing linearly with the dose. The average depth of potential fluctuations is also estimated to increase with the dose and saturates for doses above 1015 cm-2. A model is proposed which associates the potential fluctuations with the antisite defects copper on indium site and indium on copper site. The saturation is explained by full randomization of copper and indium atoms on the cation sub-lattice.