Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Recovery of absorption line shapes with correction for the wavelength modulation characteristics of DFB lasers

Benoy, Thomas and Lengden, Michael and Stewart, George and Johnstone, Walter (2016) Recovery of absorption line shapes with correction for the wavelength modulation characteristics of DFB lasers. IEEE Photonics Journal, 8 (3). ISSN 1943-0655

Text (Benoy-etal-IEEEPF2016-recovery-of-absorption-line-shapes-with-correction-for-the-wavelength)
Benoy_etal_IEEEPF2016_recovery_of_absorption_line_shapes_with_correction_for_the_wavelength.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview


Tunable diode laser spectroscopy combined with wavelength modulation spectroscopy (WMS) is an important technique for non-invasive measurements of gas parameters such as pressure, concentration and temperature in high noise, harsh environments. A variety of laser types are used for these applications and the modulation characteristics can have significant effects on line shape recovery. Here we identify important characteristics of distributed feedback (DFB) lasers that need to be taken into account in the context of WMS and illustrate the effects with a 2μm wavelength, multi quantum well DFB laser used for CO2 detection. The modulation response of the laser is measured and we demonstrate how the phasor decomposition method (PDM) may be used to obtain accurate line shapes from first harmonic WMS signals by correcting for phase variation across the laser’s low frequency current sweep. We also demonstrate how the PDM approach can be improved by removing the need to pre-set the orientation of the lock-in axis, to isolate the residual amplitude modulation(RAM)component, making it more suitable for field applications.