Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Visual feature binding in younger and older adults : encoding and suffix interference effects

Brown, Louise A. and Niven, Elaine H. and Logie, Robert H. and Rhodes, Stephen and Allen, Richard J. (2017) Visual feature binding in younger and older adults : encoding and suffix interference effects. Memory, 25 (2). pp. 261-275. ISSN 0965-8211

[img] Text (Brown-etal-Memory-2016-Visual-feature-binding-in-younger-and-older-adults)
Brown_etal_Memory_2016_Visual_feature_binding_in_younger_and_older_adults.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)

Abstract

Three experiments investigated younger (18–25 yrs) and older (70–88 yrs) adults’ temporary memory for colour–shape combinations (binding). We focused upon estimating the magnitude of the binding cost for each age group across encoding time (Experiment 1; 900/1500 ms), presentation format (Experiment 2; simultaneous/sequential), and interference (Experiment 3; control/suffix) conditions. In Experiment 1, encoding time did not differentially influence binding in the two age groups. In Experiment 2, younger adults exhibited poorer binding performance with sequential relative to simultaneous presentation, and serial position analyses highlighted a particular age-related difficulty remembering the middle item of a series (for all memory conditions). Experiments 1–3 demonstrated small to medium binding effect sizes in older adults across all encoding conditions, with binding less accurate than shape memory. However, younger adults also displayed negative effects of binding (small to large) in two of the experiments. Even when older adults exhibited a greater suffix interference effect in Experiment 3, this was for all memory types, not just binding. We therefore conclude that there is no consistent evidence for a visual binding deficit in healthy older adults. This relative preservation contrasts with the specific and substantial deficits in visual feature binding found in several recent studies of Alzheimer's disease.