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Summary

In this study, we followed the genomic, lipidomic and

metabolomic changes associated with the selection

of miltefosine (MIL) resistance in two clinically

derived Leishmania donovani strains with different

inherent resistance to antimonial drugs (antimony

sensitive strain Sb-S; and antimony resistant Sb-R).

MIL-R was easily induced in both strains using the

promastigote-stage, but a significant increase in MIL-

R in the intracellular amastigote compared to the cor-

responding wild-type did not occur until promasti-

gotes had adapted to 12.2 lM MIL. A variety of

common and strain-specific genetic changes were

discovered in MIL-adapted parasites, including dele-

tions at the LdMT transporter gene, single-base

mutations and changes in somy. The most obvious

lipid changes in MIL-R promastigotes occurred to

phosphatidylcholines and lysophosphatidylcholines

and results indicate that the Kennedy pathway is

involved in MIL resistance. The inherent Sb resist-

ance of the parasite had an impact on the changes

that occurred in MIL-R parasites, with more genetic

changes occurring in Sb-R compared with Sb-S para-

sites. Initial interpretation of the changes identified in

this study does not support synergies with Sb-R in

the mechanisms of MIL resistance, though this

requires an enhanced understanding of the parasite’s

biochemical pathways and how they are genetically

regulated to be verified fully.

Introduction

Visceral leishmaniasis (VL, also called kala-azar) is a

neglected tropical disease responsible for at least

40,000 deaths/year, the majority of which occur in the

Indian sub-continent (ISC, Alvar et al., 2012). There are

a limited number of drugs available for chemotherapy of

VL and development of drug resistance limits their clini-

cal efficacy (Ready, 2014). Understanding the molecular

mechanisms responsible for drug resistance may allow

(i) the development of assays to predict the drug sus-

ceptibility of a clinical isolate, (ii) the design of interven-

tions to extend the clinical life of a drug, and (iii) the

guiding of R&D of new drugs.

First-line chemotherapy in the ISC has relied on pen-

tavalent antimonials since 1923 (among others, Sodium

Stibogluconate or Meglumine Antimoniate). Antimonials

have now been abandoned in the region because of

decreased clinical efficacy and high resistance rates of

the etiological agent, Leishmania donovani (Ready,

2014). Antimony-resistant (Sb-R) strains are still fre-

quently found in patients of the ISC, despite a lower

antimonial pressure in the region since its replacement

by miltefosine (MIL, hexadecylphosphocholine): this
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could be explained by the greater virulence of Sb-R par-

asites (Vanaerschot et al., 2014). Thus Sb-R parasites

are more likely to survive in the host and be transmitted

to a new host because they are more resistant to the

effectors of macrophages than Sb-S parasites (Carter

et al., 2005; Mukhopadhyay et al., 2011; Mukherjee

et al., 2013; Guha et al., 2014; Vanaerschot et al.,

2014). MIL was registered in India in 2002 and it is the

first oral drug for VL treatment. It is one of the main pil-

lars of the current kala-azar elimination programme that

aims to reduce the incidence of the disease in the ISC

to lower than one case per 10,000 individuals at district

or sub-district levels by 2015 (WHO-SEARO, 2011).

After 10 years of use, the efficacy of MIL is decreasing

in India (Sundar et al., 2012) and Nepal (Rijal et al.,

2013). Fully MIL-resistant (MIL-R) strains have not yet

been encountered in the ISC (Rijal et al., 2013; Praja-

pati et al., 2013) but this is probably only a matter of

time, as parasites with varying MIL susceptibilities have

been reported (Bhandari et al., 2012).

In the absence of MIL-R clinical isolates, the primary

way to study the mechanisms of resistance and to find

molecular markers is through experimental selection.

Previous reports showed that Leishmania rapidly develop

MIL resistance in experimental conditions (P�erez-Victoria

et al., 2003) and that it was associated with a decreased

accumulation of the drug. Two mechanisms were

involved: (i) an increased drug efflux mediated by the

overexpression of an ATP-binding cassette (ABC) trans-

porter P-glycoprotein (LdBPK_341060, ABCB4), and (ii)

a decreased uptake through the inactivation of a P-type

ATPase, the MIL transporter LdMT (LdBPK_131590) and

its beta subunit LdRos3 (P�erez-Victoria et al., 2006).

More recently, a series of high-throughput molecular

screening methods were applied to scrutinize adapta-

tions developed in selected MIL-R parasites. Genomic

analysis of MIL-R Leishmania major confirmed the impor-

tance of the P-type ATPase and identified mutations in

other genes (Coelho et al., 2012). In another study, RNA

microarray investigation detected many differentially

expressed genes in MIL-R L. donovani, highlighting a

compromised DNA replication/repair mechanism,

reduced protein synthesis and degradation, increased

drug efflux, altered energy utilization and increased anti-

oxidant defence mechanisms (Kulshrestha et al., 2014).

Finally, the metabolomic analysis of an Ethiopian MIL-R

L. donovani strain highlighted an increase in the levels of

amino acids, possibly to promote the adaptation of MIL-R

strains in the macrophage (Canuto et al., 2014).

Earlier work on MIL-resistance has focused on labora-

tory strains sampled from patients decades ago. This

does not take into account previous adaptations to other

drugs, in particular antimonials, which have exerted con-

tinuous selective pressure on natural populations of

L. donovani in the ISC since 1923 (Downing et al., 2011;

Decuypere et al., 2012). Consequently, we experimentally

selected MIL-resistance in an Sb-R and Sb-S L. donovani

strain recently derived from clinical isolates of Nepalese

patients. To comprehensively evaluate the underlying

mechanisms associated with resistance to MIL, we com-

pared the genome, metabolome and lipidome of wild-type

(WT) strains and lines gradually adapted to MIL.

Results

Genomic differences between WT Sb-S and Sb-R
strains prior to MIL exposure

High-depth genome sequence data allowed the identifi-

cation of key genomic differences between the two wild

type (WT, summarized in Table 1) L. donovani isolates

prior to adaption to MIL (further referred to as WT Sb-R

and WT Sb-S). Some of these were potentially associ-

ated with antimonial resistance in the Sb-R. Firstly, eight

changes in chromosome copy number distinguished the

pair: the WT Sb-R had a higher dose of chromosomes

2, 8, 11, 14 and 33 and a lower copy number of

Table 1. Summary of the genomic differences observed between Sb-S and Sb-R strains during the selection of MIL-resistance. Somy values

are rounded to the nearest unit.

Standing variation at outset Somya SNPsb CNVsc Indelsd

WT Sb-S vs WT Sb-R differences 8 127 16 51
Above affecting amino acids 33 13 33
Effect of MIL on above differences Yes in 5/8 none none None

New mutations during MIL-R Somya SNPse CNVsf Indels

Identical in Sb-S and Sb-Rg Lower chr13 none none None
At same gene in Sb-S and Sb-R A691P in Sb-S, E197D in Sb-R DLdMT in Sb-S None
Unique to Sb-S 2 1 homh 1 17 het 8 (8 CDS) None
Unique to Sb-R 4 6 homi 1 7 het 8 (298 CDS) None

For full data see Tables: aS2, bS3 and S4A, cS4B, dS4C, eS7 and S8, and fS10. gChr8 and chr33 also had reduced copy numbers. hA691P.
iIncludes E197D.
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chromosomes 5, 26 and 35 (Supporting Information

Table S2). Secondly, there were 127 SNPs between the

two isolates (Supporting Information Table S3), including

33 non-synonymous single-nucleotide polymorphisms

(SNPs, Supporting Information Table S4A), of which 10

were previously associated with Sb-R in the ISC (Down-

ing et al., 2011). Thirdly, 16 loci had a local copy num-

ber variation (CNV), affecting 30 genes and 3 non-

coding regions (Supporting Information Table S4B).

Fourthly, 38 deletions and 13 insertions differentiated

the pair, including a deletion in the WT Sb-R of two

bases at the AQP1 gene (aquaglyceroporin 1,

LdBPK_310030, Supporting Information Table S4C).

Differences in metabolite and lipid profile between WT

strains prior to MIL exposure

Approximately 350 metabolites were annotated with

IDEOM, 14 of them significantly different between the

two WT strains (summarized in Table 2, P-value<0.05).

These metabolites were associated with different meta-

bolic pathways including protein production, lipid metab-

olism and synthesis of DNA. Over 400 lipids were seen

in promastigote samples but only 21 were significantly

different between the two strains (P< 0.05, Supporting

Information Table S6). Sb-S WT promastigotes had sig-

nificantly higher levels of 10 phosphatidylcholines (PC)

and significantly higher levels of two lyso-PC (LPC) lip-

ids as peaks corresponding to LPC (19:0) and LPC

(24:0) were consistently identified in the Sb-S strain but

were absent in the Sb-R strain. The Sb-R WT strain had

significantly higher levels of eight PCs. All of the PCs

upregulated in the Sb-R strain were unsaturated, with

five or more c-c double bonds in the tail groups.

Exposure to MIL produces highly resistant L. donovani

parasites

Selection of WT promastigotes that were resistant to the

highest concentration of MIL tested (74 mM) took 31

weeks. Both WT strains took similar lengths of time to

adapt to the highest concentration of MIL. The suscepti-

bility of the MIL-R parasites was tested against the intra-

cellular amastigote stage using infected macrophages

throughout the experiment to determine if MIL-R selec-

tion at the promastigote stage was conveyed to the intra-

cellular amastigote stage. For both Sb-S and Sb-R

strains, the IC50 values of amastigotes did not increase

compared with the corresponding WT until promastigotes

Table 2. Summary of the metabolic and lipidomic differences observed between Sb-S and Sb-R strains during the selection of MIL-

resistance.

Standing variation at outset Metabolitesa LPCb PCb

WT Sb-S vs WT Sb-R differences 14 3 18
Effect of MIL on above differences N/A N/A 2 inc. In Sb-S MIL-R

New changes during MIL-R Metabolitesc LPCd PCe

Identical in Sb-S and Sb-R 8 0 0
Unique to Sb-S 15 4 11
Unique to Sb-R 4 5 10

For full data see Tables: aS5, bS6, cS11, dS12, eS13.

Table 3. The effect of MIL selection on the MIL IC50 values of

WT, MIL adapted parent and clones derived from the MIL-R parent

for Sb-S and Sb-R L. donovani strains.

Parasite

Mean IC50

value
(mM 6 SE) N

MIL-R/WT
IC50 ratio

Promastigotes
WT Sb-S 13 6 0.2 2
Sb-S MIL-R 74 mM parent 371 6 15 2 28.1
Sb-S MIL-R 74 mM clone 2 165 6 37 2 12.5
Sb-S MIL-R 74 mM clone 3 164 6 1 2 12.4
Sb-S MIL-R 74 mM clone 6 185 6 19 2 14.0
Sb-S MIL-R 74 lM clone 8 254 1 19.2

WT Sb-R 6.2 1
Sb-R MIL-R 74 mM parent 357 6 3 2 57.9
Sb-R MIL-R 74 mM clone 3 282 6 1 1 45.5
Sb-R MIL-R 74 mM clone 6 281 6 1 1 45.8
Sb-R MIL-R 74 lM clone 9 294 6 6 2 47.4

Intracellular amastigote
WT Sb-S 3 6 1 6
Sb-S MIL-R 3 mM 1 1 4.7
Sb-S MIL-R 6 mM 2 1 16.1
Sb-S MIL-R 12.2 mM 14 1 15.1
Sb-S MIL-R 49.2 mM 47 1 15.3
Sb-S MIL-R 74 mM parent 44 6 13 2
Sb-S MIL-R 74 mM clone 8 46 6 18 2

WT Sb-R 3 6 1 6
Sb-R MIL-R 3 mM 0.2 1 3.3
Sb-R MIL-R 6 mM 2 1 12.7
Sb-R MIL-R 12.2 mM 9 2 13.4
Sb-R MIL-R 49.2 mM 33 1 17.6
Sb-R MIL-R 74 mM parent 35 6 8 2 13.5
Sb-R MIL-R 74 mM clone 9 53 6 1 2
Sb-R MIL-R 74 mM clone 9 no drug 35 6 1 2

Clones in bold selected for detailed metabolomic/lipidomic analysis.
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tolerated 12.2 mM MIL (Table 3). The fully resistant pro-

mastigotes (74 mM) were also clearly resistant at the

amastigote stage, with an IC50 of 44 mM (15 times the

value of WT) and 35 mM (13 times the value of WT) for

the Sb-S MIL-R and Sb-R strain MIL-R, respectively,

(Table 3). Increasing the drug concentration to select

MIL-R promastigotes from 49.2 to 74 mM did not result in

a corresponding increase in the IC50 at the amastigote

stage (Table 3). The fact that Sb-S MIL-R and Sb-R MIL-

R parental promastigotes had IC50 values that were

higher than the maximum MIL concentration used to

induce resistance was not unexpected, as all two MIL-R

clones were grown in the medium containing 74 mM MIL.

An example of the data obtained is shown in Fig. 1A and

B (promastigotes of Sb-R and Sb-S strains) and Fig. 1C

(amastigotes of Sb-R strain).

The Sb-S MIL-R and Sb-R MIL-R promastigotes

adapted to 74 mM were then cloned to determine if the

clones had the same MIL susceptibility as the MIL-R par-

ent line. These clones had MIL IC50 values that were

lower than the corresponding MIL-R parent. This indicated

that selection resulted in a mixed population of parasites

with different susceptibilities to MIL (Table 2). The clones

with the highest resistance to MIL for both strains (clone 8

for the Sb-S MIL-R strain, clone 9 for the Sb-R MIL-R

strain) were then tested for their susceptibility to MIL as

intramacrophage amastigotes using in vitro infected mac-

rophages. The IC50 value of the Sb-S MIL-R parent and

its clone were similar, and removal of MIL pressure for 2

weeks of culture did not alter the MIL susceptibility of the

MIL Sb-S MIL-R cloned parasite. In contrast, the cloned

Sb-R MIL-R parasite had a slightly higher IC50 compared

to its parent, and culturing the cloned parasite in the

absence of MIL resulted in a drop in MIL susceptibility of

the cloned parasite to the Sb-R MIL-R parent range.

Selection of MIL-R did not impact on Sb susceptibility as

the Sb-R MIL-R clone 9 gave a similar dose-response to

SSG treatment as the WT Sb-R parasite (Fig. 1D).

Fig. 1. The effect of drug treatment on the survival of promastigotes (A, B) or intracellular amastigotes (C, D) of L. donovani parasites
treated with MIL (A, B, C) or sodium stibogluconate (SSG, D). Promastigotes of the Sb-S or Sb-S MIL-R clone 8 strain were grown in the
presence of medium alone (controls) or different concentrations of MIL (n 5 6/treatment). Cytotoxicity was assessed by determining the mean
suppression of drug treated samples compared to the relevant control (A, B). In amastigotes studies, macrophages were infected with the
relevant parasite (C, Sb-R WT or Sb-R MIL-R clone 9, D; Sb-S WT or Sb-S MIL-R clone 8) and then incubated with medium alone (controls)
or medium containing MIL (C) or SSG (D, n 5 4/treatment). After 72 hours, the percentage of cells infected was assessed and the mean
suppression in parasite numbers compared to the relevant control. Data is representative of a minimum of two experiments. *P< 0.05,
***P< 0.001 compared with relevant control.
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Genomic changes during MIL-R selection

The type of strain-specfic and common genetic changes

that occurred after MIL adaption of the two strains are

summarized in Table 1.

Mutated loci common to both strains. Upon selection of

MIL-R, the most significant change shared between the

Sb-S and Sb-R was of the LdMT locus on chr13

(LdBPK_131590, Supporting Information Tables S7-S8).

In addition to a decrease in the copy number of chr13

(Table 1, Fig. 2A and B), there were three different

mutations at this gene: one in the Sb-R and two in the

Sb-S. The Sb-R one (E197D) was observed at 35 mM

MIL and was present in all cells by that stage, despite

only emerging at 12.2 mM. Surprisingly, two independent

LdMT variants were discovered in the Sb-S MIL-R line:

a deletion (DLdMT) and a SNP (A691P); Figure 2B

shows the evolution of these variants during the selec-

tion process. At 3 mM, the 8.86 kb deletion of bases

621,000 to 629,860 encompassing two genes

(LdBPK_131590, the LdMT locus at positions 622,408-

625,701 and LdBPK_131600, at positions 627,613-

629,076) was found and it gradually increased in fre-

quency within the population from 7% (3 mM MIL) to

27% (6 mM) to 44% (12.2 mM) to 71% (35 mM). A691P

was first observed in the Sb-S parasite cell population

at 12.2 mM MIL with a frequency of 16%, indicating at

this stage 36% of the Sb-S population still survived with

the WT LdMT allele (apart from a reduced chr13 copy

number) assuming 10 generations/step. By 35 mM, only

2% of the Sb-S population did not have a mutant LdMT,

indicating that a WT LdMT was not viable at this level of

toxicity. The fall in population frequency of DLdMT from

71% (35 mM) to 33% (49 mM) and 29% (61 mM) was

paralleled by a corresponding jump in LdMT-A691P

(62% at 49 mM and 67% at 61 mM respectively). This

suggested that A691P was more advantageous at

higher concentrations of MIL than the deletion, perhaps

due to deleting an unannotated adjacent gene

(LdBPK_131600, at 627,613–629,076) or because some

unknown function of LdMT may be preserved by the

A691P substitution. Subsequent passaging in the

absence of drug pressure increased the frequency of

Fig. 2. The genetic mechanisms responsible for reducing the
amount of LdMT transporter protein in parasites.
A. Somy changes observed for Sb-R WT (top) and Sb-S WT
(bottom) during MIL exposure (x-axis) ranging from 0 (blue) to 74
mM (shades of red). The WT (0 uM) and fully resistant stages (74
mM) were completed with one and five replicates for Sb-R,
(respectively), and with three replicates for Sb-S. For Sb-R, a
resistant sample was passaged with (74 1 74) and without the drug
(74 1 0, with one replicate). For Sb-S, a resistant sample was
passaged without the drug too (74 1 0). The blue-green-beige
shading indicates the ploidy state: 1 is disomic, 1.5 is trisomic, and
2 is tetrasomic. Chromosome 13 was downregulated in both
strains, Chr33 was only in the Sb-S one.
B. The routes to reducing LdMT dosage for Sb-S WT during MIL
exposure (x-axis) ranging from 0 to 74 mM: an initial decrease in
dose though aneuploidy at 3 mM, a deletion also at 3 mM, and then
A691P at 6 mM. The y-axis indicates the alleles’ copy number
within the Sb-S population assuming one LdMT copy represents
the expected disomic state. Black indicates the WT state (A691). At
3 mM MIL, the chromosome copy number decreased from 2.80 to
0.93, and a deletion occurred encompassing LdMT that continued
to increase in frequency until 35 mM. At 12 mM MIL, P691 occurred
and rose in level until the final step at 61 mM.
C. Localisation of the LdMT deletion in the Sb-R MIL-R strain;
upper part, sequencing read depth over the region; lower part,
physical map of the LdMT locus: coordinates were given in a draft
reference based on Pacbio sequencing, as this region contains
gaps in the current reference and was not properly assembled. The
two black arrows indicate the localization of the two 444 bp direct
repeats at the deletion boundaries.
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the deletion (DLdMT, 0.86) and the sensitive allele

(LdMT-A691; 0.04) relative to the resistant LdMT-P691

(0.10). Sequence alignments showed that the DLdMT

region adjoining LdBPK_131590 and LdBPK_131600

was flanked by two 444-bp direct repeats (Fig. 2C).

Changes in mutation frequencies over time during the

selection process were used to infer the relative impor-

tance of the different MIL-R mutations using a mathe-

matical model. The evolutionary history of mutations

already implicated in MIL-R indicated that mutations at

the LdMT gene were beneficial with a selective advant-

age of 17% for the deletion and 26% for the A691P

allele in Sb-S. No significant deviations from a neutral

model were observed for the other MIL-R mutations. Our

model predicted that the LdMT deletion was pre-existing

in the Sb-S cell population at a frequency of close to 1%

(Supporting Information Fig. S1). By contrast, A691P

was inferred to have a frequency< 0.02% in the initial

population, suggesting that this could be a de novo

mutation. Changes in copy number also appear to drive

adaptation to MIL (Supporting Information Table S9).

The deletion of LdMT was verified by PCR using

genomic DNA prepared from Sb-S MIL-R clone 8 and

Sb-R MIL-R clone 9 promastigotes, and a PCR product

was only detected with the latter (data not shown).

LdMT expression was verified in WT Sb-R and Sb-R

MIL-R promastigotes by quantitative RT-PCR. LdMT

transcripts were present in the WT Sb-R but not in the

Sb-R MIL-R clone 9, while both samples showed alpha

tubulin transcripts (Ct values for WT Sb-R, Sb-R MIL-R

and negative controls, respectively; (i) for alpha-tubulin:

24.07 6 0.28; 27.19 6 0.84; 35.01 6 0.94 and (ii) for

LdMT: 27.37 6 0.36;> 35. We verified in the Illumina

alignments if SNPs were present in the UTRs flanking

LdBPK_131590 and did not find any: the next SNP was

a synonymous C/A transition at position 575518 of gene

LdBPK_131610 (position corresponds to new draft refer-

ence genome after PacBio sequencing, unpublished

data; it corresponds to position 631021 in the current

reference genome).

MIL-selected changes specific to different backgrounds. All

the genomic differences observed at the onset of the study

between the WT Sb-S and Sb-R strains remained upon

MIL-R selection, except the somy of 5 chromosomes (2, 8,

14, 33 and 35, summarized in Table 1). For each sample,

a series of specific variants appeared during the selection

(Supporting Information Text S1 and S2). When comparing

the Sb-S MIL-R strain to its WT counterpart, somy was

altered in 4 chromosomes (increase of Chr6, 14 and 23

and decrease of Chr33, Supporting Information Table S2),

there were 17 heterozygous SNPs (Supporting Information

Table S7) and 10 CNVs (Supporting Information Table

S10) – the sole homozygous SNP was A691P. For the Sb-

R MIL-R versus WT comparison, somy was also altered

for 4 chromosomes (decrease in Chr2 and 8, increase in

Chr9 and 35, Supporting Information Table S2), there were

6 homozygous SNPs (including E197D), 7 heterozygous

ones (Supporting Information Table S8), and 10 CNVs

(Supporting Information Table S10). Interestingly, all CNVs

observed in the Sb-S MIL-R strain corresponded to single

CDS, while 4 of the CNVs of the Sb-R MIL-R strain corre-

sponded to large fragments of chromosomes (amplification

of 49,735 bp in Chr27, spanning a whole transcription unit;

deletion of 116,778 bp in Chr 31; two deletions of 307,617

bp and 674,372 bp, respectively, in Chr35) containing a

total of 298 CDS (Tables 1 and Supporting Information

Table S10).

MIL transporter mutations are likely to prevent

phospholipid transport

A variety of mechanisms could be responsible for the

higher resistance of MIL-adapted parasites compared

with the corresponding WT. One is reduced drug uptake

by the MIL adapted parasites compared to the WT. To

explore this, we initially monitored MIL levels in Sb-R

WT and Sb-R MIL promastigotes exposed to MIL. We

found that it was only possible to determine drug levels

up to two hours post-treatment as WT parasites began

to show signs of cell death after two hours, resulting in

smaller number of parasites being present. We then

compared MIL levels in drug exposed Sb-S WT and Sb-

R WT promastigotes and their MIL resistant parasites.

MIL concentrations were significantly lower in the MIL-R

promastigotes compared to the corresponding WT para-

sites (P<0.05) at all times points, indicating that MIL

uptake was minimal or even non-existent in MIL-R para-

sites (Fig. 3).

Metabolomic changes during MIL-R selection

Twenty-three metabolites were significantly altered in

the Sb-S MIL-R clone compared with the Sb-S WT par-

ent and in all cases adaptation to MIL was associated

with an up regulation in the metabolites (P< 0.05,

Tables 2 and Supporting Information S11). In contrast

only 12 metabolites were significantly different in Sb-R

MIL-R clone compared with the Sb-R WT, with 9 being

upregulated and 3 being down regulated compared to

the WT (Supporting Information Table S11). Inspection

of the metabolites altered in the Sb-S and Sb-R strains

(Supporting Information Table S5) and their correspond-

ing MIL adapted strains (Supporting Information Table

S11) indicates that differences in the metabolites was

not simply due to existing differences in the metabolites

present in the WT strains.
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Nine metabolites involved in lipid metabolism were

found to be the affected by selection of MIL resistance

between the two strains. Six of these are involved in the

Kennedy pathway (Fig. 4), the primary metabolic path-

way for the synthesis of PC and phosphatidylethanol-

amines (PE). Only three of the significantly altered

metabolites were common to both MIL-R clones, that is,

choline-phosphate, phosphodimethylethanolamine (both

involved in the Kennedy pathway) and stearoylglycerone

phosphate, and they were all upregulated.

Lipidomic changes during the MIL-R selection

Selection of MIL-R was associated with significant differ-

ences in lipid content compared to the corresponding

WT parent but these were restricted to PC and LPC lip-

ids (summarized in Table 2), and alterations in the com-

position of PE lipids (data not shown). Four LPCs were

significantly upregulated in the Sb-S MIL-R strain com-

pared to its WT. Three LPCs were upregulated in the

Sb-R MIL-R strain compared to its WT, and two were

down regulated (Supporting Information Table S13). Two

of these altered LPCs were common to both MIL-R

strains [LPC(16:00) and LPC(18:0)], and in both cases

the corresponding LPC was upregulated compared to

the respective WT.

Eleven PCs were found in significantly higher amounts

between the Sb-S MIL-R strain and its WT, with six hav-

ing a ratio of> 2.0. In sharp contrast, all 10 PC were

downregulated in the Sb-R MIL-R strain compared with

its WT (Table S13). None of the altered PCs were com-

mon to the two MIL-R strains (Table S13). Only five PCs

altered in the MIL-R strains were significantly different

between the two WT strains (compare Supporting Infor-

mation Tables S6 and S13). Three PCs were signifi-

cantly higher in the WT Sb-S strain compared to the

WT Sb-R strain [PC(32:0), PC(33:0), PC(35:0)] and

MIL-R selection further increased this difference. All of

the PCs found to differ between Sb-S MIL-R and WT

were downregulated, long chain PCs and highly unsatu-

rated (at least 39 carbons in the side chains and 4 to 10

carbon double bonds). In contrast, all PCs significantly

different in Sb-R MIL-R were upregulated and were

either saturated or had only a small number of carbon

double bonds (maximum of 4).

Phosphodimethylethanolamines (PEs), diacyl-glycerols

(DAGs), triacyl-glycerols (TAGs), sphingolipids (SLs) and

other minor lipid classes were analyzed for alterations

occuring as a result of MIL-R. Of these, only SLs of Sb-R

MIL-R were found to differ significantly compared to the

corresponding WT. Of the sphingolipids identified in the

Sb-R WT and MIL-R lines, 15 were consistently downregu-

lated in the Sb-R MIL-R compared to Sb-R WT (P<0.05,

Supporting Information Table S14). Of these, eight were

different species of sphingomyelins and five were cer-

amides. Similar levels of these lipids were present in Sb-S

and Sb-R WTs, indicating that the significant changes in

these lipids were specific to the Sb-R MIL-R.

Discussion

We performed a stepwise selection of MIL resistance in

WT Sb-S (BPK282/0cl4) and Sb-R (BPK275/0cl18)

strains derived from recent clinical isolates from Nepal.

In the study, amastigote and promastigote MIL sensitiv-

ities together with lipidomic, metabolomic and genomic

changes possibly associated with MIL-resistance (MIL-

R) were assessed to explore a possible impact of Sb

susceptibility background on the development of MIL-R.

This study represents the first time such a comprehen-

sive biochemical and genomic screening has been

Fig. 3. A comparison of MIL uptake in MIL-R (Sb-S MIL-R clone 8, Sb-R MIL-R clone 9) and their corresponding WT strains (Sb-S and
Sb-R) of L. donovani. Promastigotes were cultured in HOMEM medium with and without 7 mM MIL for 0-120 min. Samples were quenched
and lipid extraction carried out using promastigotes samples (4 3 107, n 5 4/treatment). The amount of MIL present (mg/ml) was determined
using a calibration curve prepared using MIL standards.
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performed, and it allowed molecular differences associ-

ated with adaptation to MIL to be linked to mutational

changes and changes in lipid and metabolite profile

within the two strains. In our study we focused our

molecular analyses on the promastigote stage rather

than the clinically relevant amastigotes, for several rea-

sons. It was impossible so far to select MIL-R in amasti-

gotes of L. donovani (Hendrickx et al., 2014); in

contrast, in promastigotes, it is rather easy and as dem-

onstrated here, the MIL-R phenotype is preserved in

derived amastigotes. In addition, it is difficult to extract

host-free amastigotes from in vitro or in vivo infected

macrophages and the purification and extraction proc-

esses may lead to changes in lipid or metabolite profiles

compared to what occurs in situ. Results from untar-

geted studies such as this study using promastigotes

can be used in the future to guide targeted studies in

amastigotes.

During the selection experiment, we generated paren-

tal lines with 28 to 57 times decreased susceptibility to

MIL as promastigotes, while decrease was around 13 to

15 times in the amastigote stages. A significant increase

in the IC50 value for the intramacrophage amastigote

stage was not apparent until parasites adapted to sur-

vive in 12.2 mM MIL. Studies on the pharmacokinetics of

MIL indicate that blood levels above this concentration

should be achieved, for example treatment with MIL at

100 mg/kg for 28 days resulted in maximal median con-

centration of 70 mg/ml (172 mM) on day 23 (Dorlo et al.,

2012). However blood levels may not be indicative of

MIL levels within the macrophage and more recent stud-

ies have indicated that MIL treatment failures are due to

limited drug exposure in patients (Dorlo et al., 2014)

rather than MIL-R in the parasite population. We

observed considerable cytotoxicity in macrophages

treated with 148 mM MIL, indicating that this concentra-

tion would be very cytotoxic if it is maintained in vivo

after dosing. Therefore intracellular levels are likely to

be much lower than 172 mM. Thus, intracellular para-

sites within the parasitophorous vacuole of infected

macrophages may have limited exposure to high con-

centrations of MIL, and this may explain why it has

proved difficult to show increased IC50 values in para-

sites recovered from patients that relapse after MIL

treatment (Rijal et al., 2013).

Clones derived from the parental MIL-R lines were

also resistant to the drug, albeit at variable degrees,

hereby supporting the polyclonal nature of a resistant

population with individual cells with varying susceptibil-

ities (Coelho et al., 2012). Our results also demon-

strated that the main mechanism responsible for the

resistance of our lines was a low accumulation of the

drug in MIL-R parasites. Previous studies showed that

this phenomenon can be associated with lower inflow of

higher efflux, through alterations of the P-type ATPase

LdMT and/or its beta sub-unit, LdRos3 (P�erez-Victoria

et al., 2003; 2006) or over-expression of ABC-

transporters (Castanys-Mu~noz et al., 2008). From a

genomic point of view, our results converged on altera-

tions of LdMT in both Sb-S and Sb-R strains, and

no other miltefosine-driven changes were detected. Dif-

ferent types of mutations were observed, including

non-synonymous SNPs at different positions of LdMT,

complete deletion of the gene, and changes in the copy

number of chromosome 13 containing LdMT.

Fig. 4. Diagrammatic representation of the Kennedy pathway
metabolites altered in the MIL-R parasites of Sb-S (A) and Sb-R
(B) compared with their corresponding WT. A blue circle denotes a
significant down regulation (P< 0.05) of the metabolite in the MIL-R
strain compared to its WT. A red circle denotes a significant up
regulation (P< 0.05) in the MIL-R compared to WT. Key: a-chol,
acytelcholine; g-3-pchol, glycero-3-phosphocholine; chol, choline;
CDP-choline, cytidine diphosphate-choline; PC,
phosphatidylcholine; p-d-eth, phosphodimethylethanolamine; N-
meth-eth-p, N-methylethanolamine phosphate; eth, ethanolamine;
eth-p, ethanolamine phosphate; CDP-eth, cytidine diphosphate-
ethanolamine; PE, phosphodimethyethanolamine.
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Interestingly, the first genomic adaptation during selec-

tion was the early (< 12.2 mM MIL) shift of chromosome

13 from trisomy to disomy in both Sb-S and Sb-R.

Aneuploidy is a major feature of L. donovani genetic var-

iation (Downing et al., 2011; Mannaert et al., 2012) and

the ability to alter the chromosome copy number may

be a simple mechanism to respond quickly to selection

pressures, perhaps acting as transitional intermediate

fitness state until more beneficial mutations have

occurred (Covert et al., 2013).

Loss-of-function mutations are common in drug resist-

ant parasites (Ashley et al., 2014) and this loss of gene

function can offer a path to rapid adaptation to environ-

mental stresses (Khan et al., 2011). Deletion of LdMT

was observed in the Sb-S strain only with a changing

frequency during the selection process relative to alter-

native SNP alleles within the population of cells. LdMT

was deleted together with a gene encoding a hypotheti-

cal protein (LdBPK_131600) and deep analysis of the

sequence revealed that the locus containing the two

genes was flanked by two 444-bp direct repeats. Such

repeats are abundant in the Leishmania genome and by

homologous recombination they can lead to amplifica-

tion or deletion of the corresponding loci (Ubeda et al.,

2014). Mathematical modeling showed a selective

advantage for the deletion in the Sb-S strain, but the

advantage was higher for the A691P SNP. With respect

to SNPs, there is no evident pattern in the LdMT muta-

tions’ position on the protein internal or external portion,

effect on protein hydrophobicity, proximity to transmem-

brane (TM) domains (Supporting Information Tables

S15–17), or local domain type (Text S3). Last but not

least, we did not detect transcripts of LdMT in the Sb-R

MIL-R strain. This type of phenomenon is generally

associated with mutations in the regulatory regions

flanking the gene of interest and in present case, the

only SNP was within the CDS itself (E197D) and the

closest one was a C/A transition in the second next

gene (LdBPK_131610). Such a result is rather unex-

pected, but is similar to studies in trypanosomes where

a loss of heterozygocity at the TbAT1 locus accompa-

nied loss of expression (Stewart et al., 2010).

From a metabolomic point of view, a few metabolites

showed similar changes in both MIL-R strains. Three of

them were amino acids, class of metabolites previously

reported to be altered in different types of drug-resistant

L. donovani lines in which they were associated with pro-

tection against oxidative stress (Berg et al., 2013; 2015).

One of which was proline, which is also associated with

protection against oxidative stress (Inbar et al., 2013).

Another class of metabolites deserves particular attention,

that is, those involved in lipid metabolism. More specifi-

cally, the Kennedy pathway, the primary metabolic path-

way for the synthesis of PCs and PEs in L. donovani

(Kennedy and Weiss, 1956), appeared to be significantly

modulated upon resistance to MIL. While different metab-

olites of the Kennedy pathway were found to be modu-

lated in both MIL-R strains, two of them were common,

namely choline-phosphate and phosphodimethylethanol-

amine. Consistent with this finding, the lipid content of

MIL-R parasites was altered compared to their WT, with

PCs and LPCs being mostly affected. Four LPCs and 11

PCs were upregulated in Sb-S MIL-R compared to its WT,

and 8 of the PCs had between 1 and 4 double bonds in

the fatty acid tails. In contrast, most lipids were downregu-

lated in the Sb-R MIL-R compared with its WT, their PCs

were polyunsaturated and had relatively long chain tails.

This indicated that the antimony susceptibility background

of the strains did have an impact on the adaptation shown

by the parasites. Previous studies have highlighted an

altered lipid metabolism in MIL-R parasites and MIL treat-

ment has been associated with a decrease in PC content

in tandem with an increase in PE content. (Rakotomanga

et al., 2007; Imbert et al., 2012). This is somewhat corre-

lated with our Sb-R MIL-R clone in so far as a decrease

in PCs are observed. However a significant increase in

PC content was the most notable change in the lipid pool

for the Sb-S MIL-R. This inconsistency may reflect the dif-

ference in the genetic background of the parasites. Rako-

tomanga and Imbert’s studies used strain LV9 [MHOM/

LV9/HU3] from Ethiopia whereas clinical isolates from

Nepalese VL patients were used in this study. The compo-

sitions of lipids in the parasite membrane are known to

have a significant effect on the membrane fluidity (Berg

et al., 2013; 2015). Increasing the chain length or satura-

tion of fatty acid tails can also effect membrane fluidity

and increase resistance to oxidative stress, making the

parasites even better at tolerating exposure with reactive

oxygen species within the host macrophage (Zhang and

Beverly, 2010). Sphingolipid metabolism was also signifi-

cantly reduced in Sb-R MIL-R. Given that SLs are a major

source of ethanolamine phosphate in the Kennedy path-

way, it would be logical to see a knock on effect in the PE

content. While the total PE content of Sb-R MIL-R

appeared unaffected, the composition of the lipid anchors

altered with a significant increase in PEs with diacyl lipid

anchors. PEs can be synthesized via headgroup

exchange with PCs, and the significant decrease of

diacyl-PCs in Sb-R MIL-R compared to Sb-R WT could

be due to conversion of these PCs to PEs, which would

explain the reduction in SL metabolism in Sb-R MIL-R.

This study identified a number of genetic, lipidomic

and metabolomic changes during MIL adaptation in two

recent clinical isolates with differing prior sensitivities to

antimonials. Both isolate types adapted at similar rates

to MIL and could tolerate it at comparable levels. This

study highlighted that both shared a two-tiered genetic

response, first altering chromosome copy number and
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second mutating the LdMT gene when more MIL was

added. These changes were paralleled by metabolic

and lipid ones focused on the Kennedy pathway. More

metabolite changes occurred in the Sb-S strain com-

pared to the Sb-R one, suggesting that Sb-R was asso-

ciated with a faster development of MIL-R. However, the

picture was different from a genomic point of view, spe-

cifically at CNV level (298 in the Sb-R MIL-R strain vs 8

only in the Sb-S MIL-R one, Table 1). We found initial

evidence that antimonial resistance does not provide

immediate faster adaptations to high doses of MIL.

Future studies should address the lack of knowledge of

the biochemical pathways of Leishmania and their regu-

lation to improve understanding of the molecular mecha-

nisms responsible for MIL resistance. Our study focused

on two isolates but we have identified key metabolites,

lipids and genetic changes for future studies using more

strains. In addition supplementing the medium with

radiolabelled precursors (Millerioux et al., 2013) and

subsequent identification of metabolite/lipid products in

the Kennedy pathway, would allow more detailed analy-

sis of the impact of MIL-R on the parasite’s

biochemistry.

Experimental procedures

Materials

Miltefosine was kindly provided by WHO-TDR. Resazurin,
Giemsa stain, were purchased from Sigma-Aldrich (Gilling-
ham, UK). HOMEM medium (custom made by Invitrogen,

Paisley UK), RPMI-1640, penicillin/streptomycin, glycine
and foetal calf serum were obtained from Invitrogen, Pais-

ley, UK. All organic solvents (acetonitrile, isopropanol,
methanol, chloroform) were HPLC grade (Fisher Scientific,
Loughborough, UK). Ammonium formate was HPLC grade

(17843, Sigma-Aldrich Company, Gillingham, UK) and
mass spectroscopy vials (KVP6112) fitted with a low-
volume insert (INSF-01) were purchased from Kinesis(St

Neots, UK). Isolation of DNA and RNA was performed
using DNeasy Blood & Tissue kit or RNeasy Mini kit,
respectively, purchased from Qiagen, (Crawley, UK) and

cDNA synthesis was performed using AffinityScript Multiple
Temperature Reverse Transcriptase (Stratagene/Agilent
Technologies, Wokingham, UK). Random Primers (Bioline

Reagents, London, UK). MyTaq DNA polymerase reagents
(Bioline Reagents) were used for all standard PCR reac-
tions. Real Time PCR reactions were performed using

SYBRgreen Master Mix (Abgene/Thermo Scientific, Lough-
borough, UK).

Animals and parasites

Age matched inbred BALB/c female mice (20–25 g) in-
house bred were used in studies at Strathclyde University.

Animal studies were carried out with local ethical approval
and had UK Home Office approval. We used two clones

derived from Nepalese clinical isolates and previously

tested for their SSG susceptibility (Rijal et al., 2007):

MHOM/NP/03/BPK282/0cl4 (designated Sb-S, based on its

sensitivity to SbV and SbIII) and MHOM/NP/03/BPK275/

0cl18 (designated Sb-R, based on its relative insensitivity to

SbV and SbIII). Both parasites are representative of main

populations circulating in the ISC.

Selection of MIL resistant (MIL-R) clones

Selection was done on the promastigote stage: L. donovani

Sb-S and Sb-R strains were adapted to grow in increasing

concentrations in a step-wise manner with MIL (3, 6, 12.2,

35, 49.2, 61 mM and 74 mM) until all lines grew at similar

rates as wild-type parasites in HOMEM medium supple-

mented with 20% foetal calf serum. Promastigote resistance

to MIL was stopped at 74 mM because of toxicity for macro-

phages at higher concentrations. Clones derived from the

MIL-R lines were isolated using a micro-drop method (Van

Meirvenne et al., 1975), and expanded in Tobie’s medium

and then passaged using HOMEM medium supplemented

with 20% (v/v) foetal calf serum. A stock solution of aqueous

MIL (3 mg/ml, freshly prepared every 3 months) was stored

at 48C was used to prepare drug selection medium.

Lipidomic/metabolomic studies

Extraction of lipids or metabolites was carried out on day 4

of culture. Prior to extraction all of the biological replicate

cultures were quenched to 08C in an ethanol-dry ice bath to

halt metabolism. For each strain, four aliquots, from four

separate cultures, containing 4 3 107 promastigotes, were

pipetted into pre-chilled eppendorf tubes which were kept at

08C throughout the extraction procedure. The aliquots were

centrifuged for 3 min at 2,700 x g and the supernatant was

removed as spent medium for later analysis. The promasti-

gotes were then washed by re-suspending them in 1 ml of

PBS, pre-chilled to 08C. They were then centrifuged at

2,700 x g for 3 min and the supernatant was removed. This

washing procedure was repeated three times. After washing

the parasites were resuspended in 200 mL of methanol and

chloroform (1:1 v/v for lipid extraction) or chloroform:metha-

nol:water mixture (20:60:20 v/v for metabolite extraction)

and shaken in a thermomixer for 1 hour at 1400 rpm, 0oC.

The tubes were then centrifuged for 2,700 x g for 3 min at

08C and the resulting supernatant was removed and trans-

ferred to a mass spectrometry vial fitted with a low-volume

insert. Samples were stored at 2708C until analyzed.
Lipidomic and metabolomic samples were analyzed using

a Dionex Ultimate 3000 HPLC system (Thermo Fisher Sci-

entific Inc., Waltham, USA). A silica gel column (150mm x

3mm x 3mm, HiChrom, Reading, UK) was used for lipidomic

analysis and a ZIC-pHILIC column (150 mm 3 2.1 mm 3

5mm, Merck, Darmstadt, Germany) was used for metabolo-

mic analysis. The columns were connected to a Thermo

Scientific Exactive Mass Spectrometer (Thermo Fisher Sci-

entific Inc., Waltham, USA) running in positive/negative

scanning mode. In lipidomic analysis two solvents were

used in separation (solvent A: 20% isopropyl alcohol (IPA):

80% acetonitrile; solvent B: 20% IPA: 80% ammonium
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formate [20 mM]) using gradient elution at a flow of 0.3 ml/

min (0–1 min 8% B, 5 min 9% B, 10 min 20% B, 16 min

25% B, 23 min 35% B, 26–40 min 8% B). In metabolomic

studies different solvents were used in separation (solvent

A: 20mM ammonium carbonate adjusted to pH 9.2 with

ammonia; solvent B: 100% acetonitrile). Gradient elution at

a flow rate of 0.3 ml/min was used (0 min 80% B, 30 min

20% B, 31 min 8% B, 36 min 8% B, 37 min 80% B, 46 min

80% B). Processing of metabolite and lipid data was per-

formed as detailed in (t’Kindt et al., 2010). Briefly, raw data

files produced by the Exactive mass spectrometer were

converted to mxXML format and centroided using MSCon-

vert (Proteowizard, http://proteowizard.sourceforge.net/

downloads.shtml, accessed on 16 November 2014). Individ-

ual peaks were picked based on non-linear retention time

alignment, feature detection and feature alignment using

the centwave method from XCMS (https://metlin.scripps.

edu/xcms/). These peaks were converted to .peakML files

using MzMatch.R (http://mzmatch.sourceforge.net/index.

php). MzMatch.R was then used for peak extraction, filter-

ing, normalisation, group filtering and gap-filling of peaks.

This produced a single file in ‘.text ‘format containing peak

groups with the same mass/charge (m/z) values from the

different biological replicates. This file was then converted

to a .txt file and m/z values were identified as specific lipids

using Xcalibur and an in-house Excel macro that calculated

the total number of carbons and saturated carbon bonds in

the fatty acid tails of each lipid class. Metabolites were

identified using IDEOM (Creek Barrett, 2014) and 4 stand-

ard mixes were used in assays. The software identified

metabolites/lipids that were significantly different between

treatments. Comparisons between groups were based on

the ratio of WT/WT or MIL-R/WT, using the mean ratio for

the, respectively, WT used as comparator.

Genome sequencing and variant screening

Genomic DNA was sheared into 400–600-base pair frag-

ments by focused ultrasonication (Covaris Adaptive

Focused Acoustics technology, AFA Inc., Woburn, USA)

and standard Illumina libraries were prepared. 100 base

pair paired end reads were generated on the HiSeq 2000

according to the manufacturer’s standard sequencing proto-

col (Bonner et al., 2009) to produce an average of 55.4-fold

read coverage per site with at least 21-fold median depth

for each sample (Supporting Information Table S1). ENA

SRA accession numbers for all sequencing libraries are

listed in Table S1. The DNA reads were screened for con-

tamination, PCR duplicate were removed, and those with

insert sizes<1,000 bases were mapped using Smalt with

exhaustive alignments (version 0.7.2 www.sanger.ac.uk/

resources/software/smalt/, Ponstingl and Ning, 2010). Non-

mapping reads, low quality bases, bases in repetitive

regions, bases with poor mapping scores, bases in low-

complexity regions and bases with low read coverage were

all excluded from analysis. Bases with significant forward-

reverse strand amplification bias were a result of reads

mapping mainly to a single DNA strand and though rare

were eliminated by determining the rate of variants as a

function of this strand bias effect.

We scanned for dose-dependent, heterozygous and

homozygous mutations because these may be haplosuffi-

cient, and proteins associated with resistance may form

heterodi- or multi-mers (Paape and Aebischer, 2011). Chro-

mosome copy number variation and scans for large CNVs

and episomes were performed based on per cell read depth

to reflect gene dosage as outlined previously (Downing

et al., 2011). Using the difference in read-depth allele fre-

quencies between steps, 53% of valid SNPs were homozy-

gous (a read-depth frequency>0.95). This approach

detected heterozygous alleles on trisomic and tetrasomic

chromosomes where differences in the allele frequencies

based on the reads can be more challenging to detect if

present on a single chromosome only. Multiple complemen-

tary variant-calling tools were used to discover SNPs and

infer genotypes: Samtools pileup v0.1.11 (Li et al., 2009),

Samtools mpileup v0.1.18, FreeBayes (Garrison and Marth,

2012), GATK (McKenna et al., 2010) and Cortex (Iqbal

et al., 2012). SNPs associated with 74 mM MIL resistance

were present in all technical replicates.
Candidate MIL-R mutations were identified using a deep

sequencing approach using promastigote parasites from

each selection step after cloning of the parental parasite,

that is, after adaption to 3, 6, 12, 35, 49, 61and 74 mM MIL.

Four (Sb-S MIL-R clone 8) and six (Sb-R MIL-R clone 9)

replicates were sequenced to verify the mutations present

in the MIL-R parasites. We also determined the effect of

removing drug pressure on the genotype of the Sb-S and

Sb-R MIL-R cloned parasites, by maintaining them for two

weeks without drug pressure (74 1 0 mM MIL). WT para-

sites with the same passage number were sequenced at

the same time as the corresponding MIL-R parasites to

ensure that polymorphisms associated with long-term pas-

saging were omitted from drug association. Chromosome

copy number (somy), local gene copy number variation

(CNV) including extra-chromosomal segments such as epi-

somes, single nucleotide polymorphisms (SNPs) and indels

were examined at each experimental stage. Mutations alter-

ing the amino acid code are more likely to have a pro-

nounced positive or negative effect on protein function, and

changes unique to the MIL-resistant clones must be either

beneficial or neutral (Weinreich et al., 2006). Consequently,

nonsynonymous mutations distinguishing MIL-R from WT

consistent across each step of the selection processes

were more likely to be truly implicated in MIL resistance.

Statistical inference of the selective benefit of resistance

mutations

A likelihood framework was used to evaluate the mean role

of selection acting upon genetic variants within the popula-

tion (Illingworth and Mustonen, 2012), including both muta-

tion frequencies and somy variants. Given a set of

observed data O, parameters within a variety of models M

were optimized to maximize the likelihood L(O|M). Different

models described different patterns of evolution under neu-

trality, or selection for specific genetic variants. The Bayes-

ian Information Criterion (BIC) was used to distinguish

between models of differing complexity, minimising the

value:
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BIC 5 22 log L OjMð Þ 1 k log n

where n is the number of data points in the model and k is

the number of model parameters. Observed allele frequen-

cies were modelled using a multinomial likelihood function,

while observed changes in chromosomal copy number

were modelled using a double Poisson likelihood function.

Full details of the model are given in Supporting Information

Text S4.

Prediction of protein mutation amino acid properties,
position and functional impact

The biochemical and structural properties of proteins were

examined using amino acid hydrophobicity to determine the

TM portions of the protein using Bioedit v7.0.9.1, ProtScale

(Gasteiger et al., 2005) and the Membrane Protein Explorer

(MPEx v3.2, Snider et al., 2009). Surface accessibility and

secondary structure were used to predict whether mutant

amino acids were more likely to be internal or external in

the protein, and if they were part of alpha-helix, beta-sheet

or coil structures (NetSurfP, Petersen et al., 2009). Protein

function impacts were predicted with Polyphen-2 v2.2.2

(Adzhubei et al., 2010), SNAP (Bromberg and Rost, 2007)

and SIFT (Kumar et al., 2009).

PCR studies

PCR studies were completed using genomic DNA or cDNA

prepared from RNA, both isolated using L. donovani pro-

mastigotes. Genomic DNA was prepared using the DNeasy

Blood & Tissue kit and RNA was isolated using the RNeasy

Mini Kit. Complementary DNA was synthesized from 2 mg

of RNA, using 1 ml of Random Primers diluted with molecu-

lar grade water to give final volume of 15 ml. The mixture

was incubated at 658C for 5 min and samples were then

left at room temperature for 10 min before adding 2 ml of

10X Affinity script buffer, 2ml of 100 mM DDT, 0.8ml of

100mM deoxynucleotide triphosphate (dNTP) mix and 1ml

of RT enzyme to a final volume of 20 ml. Samples were

incubated at 258C for 10 min, followed by 558C for 1 hour,

and then heated at 708C for 15 min. PCR studies with pri-

mers specific for L. donovani LdMT gene (LdMT-Forward:

50-CAAGTGCCTTTCCACCAGAATC-30,LdMT-Reverese: 50-
CTCACCTTTTTGAACTCCAAC AGG-3) and alpha-tubulin

gene (AlphaTubulin-Forward: 50-AGCTGTCCGTCGCGGACA

TCA CGAACTCGGTGTTT-30, AlphaTubulin-Reverse:50-CGAA

CTGAATTGTGCGCTTCGTCT TGATCGTCGCAAT-3’). Each

PCR reaction contained 2 ml of MyTaq DNA Polymerase, 10

ml of 5x Reaction Buffer, 25 of pmol each of forward and

reverse primers, 2 ml of DNA and made to a final volume of

30 ml with molecular grade water. PCR conditions were as fol-

lows: Denaturation at 948C for 3 min, 35 cycles of 948C for

30 sec, annealing 648C for 45 sec and extension at 728C for

1 min. Final extension was carried out at 728C for 10 min.

PCR products were separated by gel electrophoresis and the

products visualized under UV light and a digital image of the

results obtained.
Quantitative RT-PCR reactions were carried out in a final

volume of 12.5 ml, using 6.25ml of SYBR green, 1 ml of tem-

plate cDNA, 25 of pmol of forward and reverse primers (as

above) and molecular grade water. In RT-PCR reactions the

following conditions were used: denaturation at 958C for 10

min; 40 cycles of the following steps: 958C for 30 sec, 638C

for 45 sec and extension at 728C for 1 min; and a final

cycle of 958C for 30 sec and 558C for 30 sec. All samples

were carried out in duplicate. Gene expression was calcu-

lated using the 2DDC
T method (Livak and Schmittgen, 2001)

method. The housekeeping gene a-tubulin was used as a

comparison for expression levels.

Promastigote inhibition studies

The effects of MIL on the growth of promastigotes were

tested using a colorimetric-based assay using resazurin.

Parasites were added to the wells of a 96 well tissue cul-

ture plate at a concentration of 5 3 105 parasites/well and

grown in the presence of medium alone (controls) or

medium containing various concentrations of MIL (3–785

lM, n 5 6/treatment). Plates were incubated for 72 hours at

278C. and then 20 ml of resazurin solution (0.0125% w/v

PBS pH 7.4) was then added to samples and the samples

were incubated for a further 18 hours at 278C. The absorb-

ance of samples at 550–590 nm was determined using

Softmax Pro 2.0 software. The effect of drug treatment on

cell viability was determined by calculating the percentage

suppression in cell growth for drug treated samples com-

pared with the mean control value (n 5 6/treatment). The

mean suppression/treatment was used to determine the

IC50 for a particular formulation using GrafitV
R

5 software.

MIL uptake studies

To quantify the uptake of MIL by WT and MIL-R parasites,

5 ml cultures of parasites at day 4 of growth were pelleted,

resuspended in 5 ml medium containing 7 mM of MIL, and

the resulting suspension was transferred to a new tissue

culture flask. Flasks were quenched at time 0, 30, 60 and

120 min post exposure to MIL and 4 3 107 parasites were

aliquoted into pre-chilled eppendorfs, sitting on ice. Lipid

extraction was then carried out on these samples as

described above. A calibration curve was produced by spik-

ing samples of the extraction solvent with MIL standards at

0.24, 0.72, 2.4, 7.2 and 14.4 mM. Linear regression was

used to fit a standard curve for the AUC of the MIL peak

from the standards (correlation coefficent> 0.97), and this

data was used to determine the MIL present in parasites at

time of quenching.

Macrophage studies

Peritoneal macrophages, harvested from mice 72 hours

after intraperitoneal injection of starch solution (3% w/v

PBS pH 7.4), using the method described by Carter et al.

(2005). Cells were infected using a host: parasite ratio of

20:1. The effect of treatment on parasite survival was deter-

mined as the mean percentage suppression in the percent-

age of cells infected and the number of parasites/host cell/
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for each treatment (n 5 4/treatment) by comparing each

experimental value with the relevant mean control value.

Statistical analysis of data

The effect of drug treatment on cell proliferation in in vitro

drug studies were analyzed using a Mann Whitney U test

for comparing two treatments or a Kruskal Wallis test fol-

lowed by Dunns ad hoc test for statistical differences

between three or more treatments (StatviewVR v5.0.1). Lipi-

domic and metabolomic data which compared WT with WT

or WT with the corresponding MIL-R were analyzed using a

Mann Whitney U-test or a Student’s t-test where the P-val-

ues were corrected for multiple testing using the Benjamini-

Hochberg method using R. The null hypothesis was not

accepted if the adjusted P<0.05.

Acknowledgements

This study was supported by as part of the FP7 EC Kaladrug-

R project (http://cordis.europa.eu/project/rcn/88823_en.html,

grant number: 222895). JAC and MJS are supported by the

Wellcome Trust via their core support for the Wellcome Trust

Sanger Institute (grant number 098051). TMF was funded by

a BBSRC Research Experience Placement (grant number

BB/J014540/1). CJRI was supported by a Sir Henry Dale Fel-

lowship jointly funded by the Wellcome Trust and the Royal

Society (grant number 101239/Z/13/Z). This research was

supported in part by the National Science Foundation (grant

number: NSF PHY11-25915) and by the Belgian Science Pol-

icy Office (TRIT, contract P7/41, to J-C.D.).

References

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E.,

Gerasimova, A., Bork, P., et al. (2010) A method and

server for predicting damaging missense mutations. Nat

Methods 7: 248–249.
Alvar, J., Velez, I.D., Bern, C., Herrero, M., Desjeux, P.,

Cano, J., et al. (2012) Leishmaniasis worldwide and

global estimates of its incidence. PLoS One 7: e35671.
Ashley, E.A., Dhorda, M., Fairhurst, R.M., Amaratunga, C.,

Lim, P., Suon, S., et al., (2014) Spread of artemisinin

resistance in Plasmodium falciparum malaria. N Engl J

Med 371: 411–423.
Berg, M., Vanaerschot, M., Jankevics, A., Cuypers, B.,

Maes, I., Mukherjee, S., et al. (2013) Metabolic adapta-

tions of Leishmania donovani in relation to differentiation,

drug resistance, and drug pressure. Mol Microbiol 90:

428–442.

Berg, M., Garc�ıa-Hern�andez, R., Cuypers, B., Vanaerschot,

M., Manzano, J.I., Poveda, J.A., et al., (2015) Experimen-

tal resistance to drug combinations in Leishmania dono-

vani: Metabolic and phenotypic adaptations. Antimicrob

Agents Chemother 59: 2242–2255.

Bhandari, V., Kulshrestha, A., Deep, D.K., Stark, O.,

Prajapati, V.K., and Ramesh, V. (2012) Drug susceptibility

in Leishmania isolates following miltefosine treatment in

cases of visceral leishmaniasis and post kala-azar dermal

leishmaniasis. PLoS Negl Trop Dis 6: e1657.

Bonner, I.F., Quail, M.A., Turner, D.J., and Swerdlow, H. (2009)

Improved protocols for illumina sequencing. Curr Protoc

Hum Genet 18, doi: 10.1002/0471142905.hg1802s62.
Bromberg, Y., and Rost, B. (2007) SNAP: predict effect of

non-synonymous polymorphisms on function. Nucleic

Acids Res 35: 3823–3835.
Canuto, G.A., Castilho-Martins, E.A., Tavares, M.F., Rivas,

L., Barbas, C., and L�opez-Gonz�alvez, �A. (2014) Multi-

analytical platform metabolomic approach to study milte-

fosine mechanism of action and resistance in Leishma-

nia. Anal Bioanal Chem 406: 3459–3476.
Carter, K.C., Hutchison, S., Boitelle, A., Murray, H.W.,

Sundar, S., and Mullen, A.B. (2005) Sodium stibogluconate

resistance in Leishmania donovani correlates with greater

tolerance to macrophage antileishmanial responses and tri-

valent antimony therapy. Parasitology 131: 747–757.

Castanys-Mu~noz, E., P�erez-Victoria, J.M., Gamarro, F., and

Castanys, S. (2008) Characterization of an ABCG-like

transporter from the protozoan parasite Leishmania with

a role in drug resistance and transbilayer lipid movement.

Antimicrob Agents Chemother 52: 3573–3579.
Coelho, A.C., Boisvert, S., Mukherjee, A., Leprohon, P., and

Corbeil, J. (2012) Ouellette M. Multiple mutations in het-

erogeneous miltefosine-resistant Leishmania major popu-

lation as determined by whole genome sequencing.

PLoS Negl Trop Dis 6: e1512.
Covert, A.W., 3rd, Lenski, R.E., Wilke, C.O., and Ofria, C.

(2013) Experiments on the role of deleterious mutations

as stepping stones in adaptive evolution. Proc Natl Acad

Sci USA 110: E3171–E3178.
Creek, D.J., and Barrett, M.P. (2014) Determination of anti-

protozoal drug mechanisms by metabolomics approaches.

Parasitology 141: 83–92.

Decuypere, S., Rijal, S., Yardley, V., De Doncker S.,

Laurent T., Khanal B., et al. (2005) Gene expression

analysis of the mechanism of natural Sb(V) resistance in

Leishmania donovani isolates from Nepal. Antimicrob

Agents Chemother 49: 4616–4621.
Dorlo, T.P., Balasegaram, M., Beijnen, J.H., and de Vries,

P.J. (2012) Miltefosine: a review of its pharmacology and

therapeutic efficacy in the treatment of leishmaniasis.

J Antimicrob Chemother 67: 2576–2597.
Dorlo, T.P., Rijal, S., Ostyn, B., de Vries, P.J., Singh, R.,

Bhattarai, N., et al. (2014) Failure of miltefosine in vis-

ceral leishmaniasis is associated with low drug exposure.

J Infect Dis 210: 146–153.
Downing, T., Imamura, H., Decuypere, S., Clark, T.G.,

Coombs, G.H., Cotton, J.A., et al. (2011) Whole genome

sequencing of multiple Leishmania donovani clinical iso-

lates provides insights into population structure and mech-

anisms of drug resistance. Genome Res 21: 2143–2156.
Garrison, E., and Marth, G. (2012) Haplotype-based variant

detection from short-read sequencing. arXiv 1207.3907

[q-bio.GN]
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.,

Wilkins, M.R., Appel, R.D., and Bairoch A. (2005) Protein

identification and analysis tools on the ExPASy server. In

The Proteomics Protocols Handbook. Walker, J., Walker,

M., (eds). Totowa: Humana Press, pp. 571–607.

1146 C. D. Shaw et al. �

VC 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd., Molecular Microbiology, 99, 1134–1148

http://cordis.europa.eu/project/rcn/88823_en.html
info:doi/10.1002/0471142905.hg1802s62


Guha, R., Das, S., Ghosh, J., Sundar, S., Dujardin, J.C.,

and Roy, S. (2014) Antimony resistant Leishmania dono-

vani but rot sensitive ones drives greater frequency of

potent T-regulatory cells upon interaction with human

PBMCs: role of IL-10 and TGF-b in early immune

response. PLoS Negl Trop Dis 8: e2995.

Hendrickx, S., Boulet, G., Mondelaers, A., Dujardin, J.C.,

Rijal, S., Lachaud, L., et al. (2014) Experimental selection

of paromomycin and miltefosine resistance in intracellular

amastigotes of Leishmania donovani and L. infantum.

Parasitol Res 113: 1875–1881.
Illingworth, C.J.R., and Mustonen, V. (2012) A method to

infer positive selection from marker dynamics in an asex-

ual population. Bioinformatics 28: 831–837.

Imbert, L., Ramos, R.G., Libong, D., Abreu, S., Loiseau,

P.M., and Chaminade, P. (2012) Identification of phospho-

lipid species affected by miltefosine action in Leishmania

donovani cultures using LC-ELSD, LC-ESI/MS, and multi-

variate data analysis. Anal Bioanal Chem 402: 1169–

1182.
Inbar, E., Schlisselberg, D., Suter Grotemeyer, M., Rentsch,

D., and Zilberstein, D. (2013) A versatile proline/alanine

transporter in the unicellular pathogen Leishmania dono-

vani regulates amino acid homoeostasis and osmotic

stress responses. Biochem J 449: 555–566.
Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean,

G. (2012) De novo assembly and genotyping of variants

using colored de Bruijn graphs. Nat Genet 44: 226–232.
Kennedy, E.P., and Weiss, S.B. (1956) The function of cyti-

dine coenzymes in the biosynthesis of phospholipids.

J Biol Chem 222: 193–214.

Khan, A.I., Dinh, D.M., Schneider, D., Lenski, R.E., and

Cooper, T.F. (2011) Negative epistasis between beneficial

mutations in an evolving bacterial population. Science

332: 1193–1196.
Kulshrestha, A., Sharma, V., Singh, R., and Salotra, P.

(2014) Comparative transcript expression analysis of

miltefosine-sensitive and miltefosine-resistant Leishmania

donovani. Parasitol Res 113: 1171–1184.

Kumar, P., Henikoff, S., and Ng, P.C. (2009) Predicting the

effects of coding non-synonymous variants on protein

function using the SIFT algorithm. Nat Protoc 4: 1073–1081.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J.,

Homer, N., et al., (2009) The Sequence alignment/map

format and SAMtools. Bionformatics 15: 2078–2079.
Livak, K.J., and Schmittgen, T.D. (2001) Analysis of relative

gene expression data using real-time quantitative PCR

and the 2-Delta Delta CT Method. Methods 25: 402–408.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A.,

Cibulskis, K., Kernytsky, A., et al., (2010) The Genome

Analysis Toolkit: a MapReduce framework for analyzing

next-generation DNA sequencing data. Genome Res 20:

1297–1303.
Mannaert, A., Downing, T., Imamura, H., and Dujardin, J.C.

(2012) Adaptive mechanisms in pathogens: universal

aneuploidy in Leishmania. Trends Parasitol 28: 370–376.
Millerioux, Y., Ebikeme, C., Biran, M., Morand, P.,

Bouyssou, G., Vincent, I.M., et al. (2013) The threonine

degradation pathway of the Trypanosoma brucei procyclic

form: the main carbon source for lipid biosynthesis is

under metabolic control. Mol Microbiol 90: 114–129.

Mukhopadhyay, R., Mukherjee, S., Mukherjee, B., Naskar,

K., Mondal, D., Decuypere, S., et al. (2011) Characterisa-

tion of antimony-resistant Leishmania donovani isolates:

biochemical and biophysical studies and interaction with

host cells. Int J Parasitol 41: 1311–1321
Mukherjee, B., Mukhopadhyay, R., Bannerjee, B., Chowdhury,

S., Mukherjee, S., Naskar, K., et al. (2013) Antimony-resist-

ant but not antimony-sensitive Leishmania donovani upre-

gulates host IL-10 to overexpress multidrug-resistant protein

1. Proc Natl Acad Sci USA 110: E575–E582.
Paape, D., and Aebischer, T. (2011) Contribution of proteo-

mics of Leishmania spp. to the understanding of differen-

tiation, drug resistance mechanisms, vaccine and drug

development. J Proteomics 74:1614–1624.

P�erez-Victoria, F.J., Gamarro, F., Ouellette, M., and

Castanys, S. (2003) Functional cloning of the miltefosine

transporter. A novel P-type phospholipid translocase from

Leishmania involved in drug resistance. J Biol Chem 278:

49965–49971.
P�erez-Victoria, F.J., S�anchez-Ca~nete, M.P., Castanys, S.,

and Gamarro, F. (2006) Phospholipid translocation and

miltefosine potency require both L. donovani miltefosine

transporter and the new protein LdRos3 in Leishmania

parasites. J Biol Chem 281: 23766–23775.
Petersen, B., Petersen, T.N., Andersen, P., Nielsen, M., and

Lundegaard, C.A. (2009) Generic method for assignment

of reliability scores applied to solvent accessibility predic-

tions. BMC Struct Biol 9: 51.
Ponstingl, H., and Ning, Z. (2010) SMALT – A new mapper

for DNA sequencing reads. F1000Posters 1: 313.
Prajapati, V.K., Sharma, S., Rai, M., Ostyn, B., Salotra, P.,

Vanaerschot M, et al. (2013) In vitro susceptibility of

Leishmania donovani to miltefosine in Indian visceral

leishmaniasis. Am J Trop Med Hyg 89: 750–754.
Rakotomanga, M., Blanc, S., Gaudin, K., Chaminade, P.,

and Loiseau, P.M. (2007) Miltefosine affects lipid metabo-

lism in Leishmania donovani promastigotes. Antimicrob

Agents Chemother 51: 1425–1430.
Ready, P.D. (2014) Epidemiology of visceral leishmaniasis.

Clin Epidemiol 6: 147–154.
Rijal, S., Yardley, V., Chappuis, F., Decuypere, S., Khanal,

B., Singh, R., et al. (2007) Antimonial treatment of vis-

ceral leishmaniasis: are current in vitro susceptibility

assays adequate for prognosis of in vivo therapy out-

come. Microbes Infect 9: 529–535.
Rijal, S., Ostyn, B., Uranw, S., Rai, K., Bhattarai, N.R.,

Dorlo, T.P., et al. (2013) Increasing failure of miltefosine

in the treatment of kala-azar in Nepal and the potential

role of parasite drug resistance, reinfection, or noncompli-

ance. Clin Infect Dis 56:1530–1538.

Snider, C., Jayasinghe, S., Hristova, K., and White, S.H.

(2009) MPEx: a tool for exploring membrane proteins.

Protein Sci 18: 2624–2628.
Stewart, M.L., Burchmore, R.J., Clucas, C., Hertz-Fowler, C.,

Brooks, K., Tait, A., et al. (2010) Multiple genetic mecha-

nisms lead to loss of functional TbAT1 expression in drug-

resistant trypanosomes. Eukaryot Cell 9: 336–343.
Sundar, S., Singh, A., Rai, M., Prajapati, V.K., Singh, A.K.,

Ostyn, B., et al. (2012) Efficacy of miltefosine in the treat-

ment of visceral leishmaniasis in India after a decade of

use. Clin Infect Dis 55: 543–550.

Characterisation of MIL-R Leishmania donovani parasites 1147

VC 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd., Molecular Microbiology, 99, 1134–1148



t’Kindt, R., Scheltema, R.A., Jankevics, A., Brunker, K.,
Rijal, S., Dujardin, J.C., et al. (2010) Metabolomics to
unveil and understand phenotypic diversity between
pathogen populations. PLoS Negl Trop Dis 4: e904.

Ubeda, J.M., Raymond, F., Mukherjee, A., Plourde, M.,

Gingras, H., Roy, G., et al. (2014) Genome-wide stochastic
adaptive DNA amplification at direct and inverted DNA
repeats in the parasite Leishmania. PLoS Biol 12: e1001868.

Van Meirvenne, N., Janssens, P.G., Magnus, E., Lumsden,
W.H., and Herbert, W.J. (1975) Antigenic variation in

syringe passaged populations of Trypanosoma (Trypano-
zoon) brucei. II. Comparative studies on two antigenic-
type collections. Ann Soc Belg Med Trop 55: 25–30.

Vanaerschot, M., Dumetz, F., Roy, S., Ponte-Sucre, A.,
Arevalo, J., and Dujardin, J.C. (2014) Treatment failure in

leishmaniasis: drug-resistance or another (epi) - pheno-
type? Expert Rev Anti Infect Ther 12: 937–946.

Weinreich, D.M., Delaney, N.F., Depristo, M.A., and Hartl,

D.L. (2006) Darwinian evolution can follow only very few

mutational paths to fitter proteins. Science 312:

111–114.
WHO-SEARO. (2011) Intercountry Consultation on Elimina-

tion of Kala-Azar in the South-East Asia Region. World

Health Organization. [WWW document]. URL http://apps.

searo.who.int/pds_docs/B4830.pdf
Zhang, K., and Beverley, S.M. (2010) Phospholipid and

sphingolipid metabolism in Leishmania. Mol Biochem Par-

asitol 170: 55–64.

Supporting information

Additional supporting information may be found in the

online version of this article at the publisher’s web-site.

1148 C. D. Shaw et al. �

VC 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd., Molecular Microbiology, 99, 1134–1148

http://apps.searo.who.int/pds_docs/B4830.pdf
http://apps.searo.who.int/pds_docs/B4830.pdf

	l

