Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems

Edrah, Mohamed and Lo, Kwok L. and Anaya-Lara, Olimpo (2015) Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems. IEEE Transactions on Sustainable Energy, 6 (3). 759 - 766. ISSN 1949-3029

[img]
Preview
Text (Edrah-etal-IEEE-TOSE-2015-Impacts-of-high-penetration-of-DFIG-wind-turbines-on-rotor)
Edrah_etal_IEEE_TOSE_2015_Impacts_of_high_penetration_of_DFIG_wind_turbines_on_rotor.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

With the integration of wind power into power systems continues to increase, the impact of high penetration of wind power on power system stability becomes a very important issue. This paper investigates the impact of doubly fed induction generator (DFIG) control and operation on rotor angle stability. Acontrol strategy for both the rotor-side converter (RSC) and grid-side converter (GSC) of the DFIG is proposed to mitigate DFIGs impacts on the system stability. DFIG-GSC is utilized to be controlled as static synchronous compensator (STATCOM) to provide reactive power support during grid faults. In addition, a power system stabilizer (PSS) is implemented in the reactive power control loop of DFIG-RSC. The proposed approaches are validated on a realistic Western System Coordinating Council (WSCC) power system under both small and large disturbances. The simulation results show the effectiveness and robustness of both DFIG-GSC control strategy and PSS to enhance rotor angle stability of power system.