Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Model-based acceleration control of turbofan engines with a Hammerstein-Wiener representation

Wang, Jiqiang and Ye, Zhifeng and Hu, Zhongzhi and Wu, Xin and Dimirovsky, Georgi and Yue, Hong (2015) Model-based acceleration control of turbofan engines with a Hammerstein-Wiener representation. International Journal of Turbo and Jet Engines. ISSN 2191-0332

[img]
Preview
Text (Wang-etal-IJTJE-2016-Model-based-acceleration-control-of-turbofan-engines-with)
Wang_etal_IJTJE_2016_Model_based_acceleration_control_of_turbofan_engines_with.pdf - Accepted Author Manuscript

Download (316kB) | Preview

Abstract

Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.