Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The preparation and structures of group 12 (Zn, Cd, Hg) complexes of the soft tripodal ligand hydrotris(methimazolyl)borate (Tm)

Cassidy, I. and Garner, M. and Kennedy, A.R. and Potts, G.B.S. and Reglinski, J. and Slavin, P.A. and Spicer, M.D. (2002) The preparation and structures of group 12 (Zn, Cd, Hg) complexes of the soft tripodal ligand hydrotris(methimazolyl)borate (Tm). European Journal of Inorganic Chemistry, 2002 (5). pp. 1235-1239. ISSN 1434-1948

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Complexes of the hydrotris(methimazolyl)borate ligand (Tm) have been prepared with zinc, cadmium and mercury halides. Complexes of type [M(Tm)X] were obtained and characterised by NMR and mass spectrometry, X-ray crystallographic analysis of [Zn(Tm)X] (X = Cl, Br, I) reveals a symmetrical coordination mode of the ligand, but no significant change with different halides, which sit on the approximate C-3 axes of the complexes, The structures of [M(Tm)Br] (M = Cd, Hg) are isomorphous with one another, Again, the ligand is symmetrically coordinated to the metal, but the halide is now significantly displaced from the approximate C-3 axis of the M(Tm) unit, resulting in what approximates to a trigonal pyramidal geometry. Unlike in most distorted mercury structures, little bond length expansion (towards two- or three-coordinate geometries) occurs. This is ascribed to the strong affinity of the thione donors for Hg.