Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Ultrahigh step-up DC-DC converter for distributed generation by three degrees of freedom (3DoF) approach

Hu, Yihua and Wu, Jiande and Cao, Wenping and Xiao, Weidong and Li, Peng and Finney, Stephen J. and Li, Yuan (2015) Ultrahigh step-up DC-DC converter for distributed generation by three degrees of freedom (3DoF) approach. IEEE Transactions on Power Electronics, 31 (7). pp. 4930-4941. ISSN 0885-8993

[img]
Preview
Text (Hu-etal-IEEE-TOPE-2016-Ultrahigh-step-up-DC-DC-converter-for-distributed-generation-by-three)
Hu_etal_IEEE_TOPE_2016_Ultrahigh_step_up_DC_DC_converter_for_distributed_generation_by_three.pdf - Final Published Version

Download (1MB) | Preview

Abstract

This paper proposes a novel DC-DC converter topology to achieve an ultra-high step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom (3DoF) approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional DC-DC converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W DC-DC converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and DC power transmission.