Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Ultrahigh step-up DC-DC converter for distributed generation by three degrees of freedom (3DoF) approach

Hu, Yihua and Wu, Jiande and Cao, Wenping and Xiao, Weidong and Li, Peng and Finney, Stephen J. and Li, Yuan (2015) Ultrahigh step-up DC-DC converter for distributed generation by three degrees of freedom (3DoF) approach. IEEE Transactions on Power Electronics, 31 (7). pp. 4930-4941. ISSN 0885-8993

[img]
Preview
Text (Hu-etal-IEEE-TOPE-2016-Ultrahigh-step-up-DC-DC-converter-for-distributed-generation-by-three)
Hu_etal_IEEE_TOPE_2016_Ultrahigh_step_up_DC_DC_converter_for_distributed_generation_by_three.pdf - Final Published Version

Download (1MB) | Preview

Abstract

This paper proposes a novel DC-DC converter topology to achieve an ultra-high step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom (3DoF) approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional DC-DC converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W DC-DC converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and DC power transmission.